- •09.03.01 Информатика и вычислительная техника
- •Глава 1 Общие сведения о теории принятия решений
- •1.1 Понятия, связанные с принятием решений
- •1.2 Определенность результатов принимаемых решений
- •1.3 Критерии оценки решения
- •5 Реальные процедуры принятия управленческих решений.
- •1.4 Системы поддержки принятия решения
- •1.5 Математическое моделирование при принятии решений
- •1.6 Классификация математических моделей структурированных систем
- •1.7 Задачи моделирования на различных уровнях принятия решений
- •Глава 2 Системы поддержки принятия решений, основанные на знаниях
- •2.1 Способы описания знаний
- •2.2 Когнитивные модели
- •2.3 Онтологические модели процесса принятия решений
- •Ниже приведены краткие сведения об онтологиях и пример их использования для моделирования процессов принятия решений в системах обучения. Слово «онтология» имеет два значения:
- •Методология создания онтологий. Практическая разработка онтологии включает:
- •2.4 Экспертный подход к принятию решений
- •2.4.1 Методы экспертных оценок
- •2.4.2 Методы средних баллов при оценке альтернатив
- •2.5 Продукционные модели знаний
- •2.5.1 Основные определения
- •2.5.2 Байесовский подход к построению продукционных моделей знаний
- •2.5.3 Структура базы знаний и алгоритм логического вывода
- •Глава 3 Методы оптимизации в задачах принятия решений
- •3.1 Принятие решений на основе методов линейного программирования
- •3.2 Математическая модель планирования производства
- •3.3 Задачи оптимального планирования производства
- •3.4 Транспортная задача
- •3.5 Задачи об упаковке
- •3.5.1 Задача о рюкзаке
- •3.5.2 Задачи упаковки в контейнеры
- •3.6 Задачи о замене оборудования
- •3.6.1 Простейшая задача о замене оборудования
- •3.6.2 Задача об оптимальных сроках замены дискового оборудования
- •3.7 Многокритериальные задачи принятия решений
- •Глава 4 Вероятностные модели формирования и выбора альтернатив решений
- •4.1 Моделирование систем на основе формализма цепей Маркова
- •4.1.1 Определение и динамика цепи Маркова
- •4.1.2 Оценка длительности пребывания процесса во множестве невозвратных состояний
- •4.1.3 Оценка поведения цепей Маркова при большом числе шагов
- •4.2 Модель процесса обучения как цепь Маркова
- •4.3 Система обслуживания заявок с очередью и отказами
- •4.4 Модель динамики информационных ресурсов
- •4.5 Принятие решений об оптимизации инвестиционного портфеля
- •4.6 Имитационное моделирование при принятии решений
- •4.6.1 Система AnyLogic: активные объекты, классы и экземпляры активных объектов
- •4.6.2 Объектно-ориентированный подход
- •4.6.3 Средства описания поведения объектов
- •4.6.4 Анимация поведения и интерактивный анализ модели
- •4.6.5 Примеры имитационного моделирования
- •Глава 5 Сетевые модели поддержки принятия решений
- •5.1 Обыкновенные сети Петри
- •5.1.1 Формальное определение
- •5.1.2 Графы сетей Петри
- •5.1.3 Пространство состояний сети Петри
- •5.1.4 Основные свойства сетей Петри
- •5.1.5 Некоторые обобщения сетей Петри
- •5.1.6 Инварианты сетей Петри
- •5.2 Раскрашенные (цветные) сети Петри (cpn)
- •5.2.1 Мультимножества
- •5.2.2 Формальное определение cpn
- •5.2.3 Функционирование cpn
- •5.2.4 Расширения cpn
- •5.2.5 Сравнение формализмов обыкновенных и раскрашенных сетей Петри
- •5.2.6 О моделирующих возможностях сетей Петри
- •5.3 Моделирование дискретных систем
- •5.3.1 Моделирование вычислительных систем
- •4.3.2 Моделирование программ
- •5.3.3 Моделирование протоколов передачи данных
- •5.3.4. Об исследовании сетей Петри с помощью эвм
- •5.4 Герт-сети
- •5.4.1 Описание герт-сети
- •5.4.2 Производящие функции герт-сетей
- •5.4.3 Вычисление w-функций для типовых соединений дуг
- •5.4.4 Модель процесса обучения как герт-сеть
- •Глава 6 Примеры систем поддержки принятия решений
- •6.1 Система эспла
- •6.1.1 Режимы функционирования системы
- •6.1.2 Принятие решений при техногенных авариях
- •6.1.3 Использование информационных ресурсов
- •6.2 Информационная система дистанционного мониторинга лесных пожаров Федерального агентства лесного хозяйства рф
- •6.2.1 Общая характеристика системы
- •6.2.2 Использование спутниковых данных
- •6.2.3 Центры приема и обработки спутниковых данных
- •6.2.4 Информационные продукты, формируемые системой
- •6.2.5 Прогнозирование параметров лесных пожаров по данным исдм-Рослесхоз
- •Г.А. Доррер методы и системы принятия решений
- •Красноярск 2016
5.2.4 Расширения cpn
Как уже отмечалось в п. 5.1.5, использование сетей Петри в различных прикладных задачах может потребовать придания им дополнительных возможностей, что приводит к созданию расширений этих сетей. Некоторые расширения аналогичны рассмотренным в п.5.1.5, (например иерархические CPN), потребность в ряде других отсутствует, т.к. формализм CPN позволяет их описать (CPN с приоритетами, ингибиторные сети, самомодифицируемые сети).
Ниже мы рассмотрим одно важное расширение CPN, значительно увеличивающее их моделирующие возможности: CPN с временным механизмом.
Существует ряд задач моделирования, в которых необходимо учитывать не только последовательность событий, но и время их наступления, а также продолжительность. Для этой цели предусмотрено расширение возможностей раскрашенных сетей Петри путем введения временного механизма (так называемых timedCPN [42]). В несколько упрощенном виде сущность такого расширения описана ниже.
А. В модель системы вводятся часы, показывающие глобальное время . Обычно это время считается дискретным, т.е. означает номер такта, выдаваемого тактовым генератором системы моделирования. Глобальное время отличается от времени , которое содержится в определении (5.13), поскольку есть номер шага работы CPN, а изменяется независимо от работы сети.
Б.
Ресурсы, перемещаемые в сети (фишки)
могут получить временные метки. Такие
ресурсы, в общем виде, задаются
мультимножествами с временными метками
(timedmulti-sets),
однако мы эту теорию не рассматриваем.
Отметим лишь, что при описании множества
цветов добавляются пометки timed,
а переменные соответствующего типа
снабжаются знаками @ (по-английски
читается at,
т.е. «во время»). Это означает, что
переменная привязана к глобальному
времени. После значка @ в квадратных
скобках указывается значение глобального
времени, в течение которого возможно
использование данных фишек при
срабатывании переходов, для которых
они являются входными. При этом запись
вида @[500] говорит о том, что фишка
«включается» в момент
и далее готова для работы в сети, а запись
@[500, 600] означает, что фишка может
использоваться в диапазоне глобального
времени
.
Приведем пример.
;
;
;
.
Возможное значение
мультимножества определяемого переменной
:
.
В. Каждый переход, на вход которого поступают фишки, имеющие временные метки, получает дополнительное условие срабатывания: он может сработать только в том случае, если системное время удовлетворяет всем условиям на входных фишках.
В свою очередь,
при срабатывании переход может увеличить
временную метку фишки, т.е. смоделировать
задержку в работе системы. Величина
задержки определяется специальным
выражением связанным с переходом, и
имеющим вид
,
где
- время задержки, задаваемое числом или
функцией.
Рис.5.8 Фрагмент CPN с временными метками
Пусть в сети на рисунке 4.8 начальная маркировка такова:
,
.
Выражения на дугах
показаны на схеме. Глобальное время
.
Переход
может сработать, при этом он осуществит
задержку передачи фишек в
на 12 единиц времени в соответствии с
выражением на
.
Таким образом, после срабатывания
получим маркировку:
,
.
Пример CPN с временным механизмом приведен в п. 5.3.3.
