Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsii_MSPR_SFU16.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
6.15 Mб
Скачать

1.2 Определенность результатов принимаемых решений

По степени определенности ожидаемые результаты принятия решений могут значительно отличаться.

До 60-х годов XX века предполагалось, что есть два класса процессов. К первому классу относились процессы, которые описываются динамическими системами, где будущее однозначно определяется прошлым (детерминированные системы). Детерминированные системы – это системы, в которых все данные и все взаимосвязи определены точно и однозначно, а результат принятия решения может быть просчитан заранее с необходимой точностью. Иначе говоря, для таких систем имеется полная предсказуемость, и мы можем заглянуть как угодно далеко в будущее и как угодно далеко в прошлое. На практике к детерминированным системам близки системы с хорошо изученными процессами, например, в машиностроении, когда технические характеристики создаваемой машины можно достаточно точно просчитать при проектировании.

Второй класс процессов – это процессы, где будущее не полностью зависит от прошлого и определяется случайными факторами (вероятностные или стохастические системы). Системы с вероятностным поведением – это системы, в которых часть параметров или взаимосвязей точно не определена, но известны вероятностные законы, которым они подчиняются. При принятии решения о поведении таких систем мы не можем точно указать, какими будут результаты, но можем гарантированно определить диапазон возможных значений и их вероятности. Примером такой системы может служить самолет, летящий в турбулентной атмосфере. Аэродинамика самолета обычно известна достаточно точно, а характеристики атмосферы могут быть описаны только на языке теории случайных процессов, в результате чего и динамика самолета будет описана вероятностно.

В 70-е годы прошлого века стало понятно, что есть третий класс процессов, которые формально описываются динамическими системами, но при этом их поведение может быть предсказано только на небольшом интервале времени. Были пересмотрены взгляды на принципиальную возможность предсказуемости. В 1963 году был введен термин горизонт прогноза или предел предсказуемости. Для существования горизонта прогноза не нужно, чтобы «Бог играл в кости», как писал Альберт Эйнштейн, добавляя в уравнения, описывающие реальность, случайные члены. Оказалось, что объекты, поведение которых невозможно предсказать на достаточно большие времена, могут быть очень простыми. Было показано, что чувствительность системы к начальным данным может вести к хаосу. Это явление получило название эффекта бабочки (по рассказу Рея Бредбери), который связан с тем, что малые причины могут привести к большим последствиям. Так, например, несмотря на совершенствование в течение десятков лет математических моделей, использование сверхмощных компьютеров, разработку новых численных методов и совершенствование систем наземного, воздушного и космического мониторинга за состоянием погоды, не удалось разработать эффективную методику ее среднесрочного (на 2-3 недели вперед) прогноза для конкретных географических точек земной поверхности. Горизонт прогноза для состояния океана эксперты оценивают в месяц. В этих случаях «взмах бабочки» в конкретной точке в некоторый момент времени может привести к ураганам и изменению погоды в огромном регионе. Экономические прогнозы, опирающиеся на представления о хаосе, стали бурно развивающейся областью деятельности, однако и они не смогли предсказать финансовые кризисы 2008 и 2015 годов.

Одно из новых направлений исследования сложных динамических систем связано с предсказанием редких катастрофических событий. Оказалось, что самые разные катастрофические события могут развиваться по близким законам, например, фондовый рынок и тектонический разлом – незадолго перед катастрофой. В обоих случаях есть быстрый катастрофический рост, на который накладываются ускоряющиеся колебания. Это так называемые режимы с обострением, когда одна или несколько величин, характеризующих систему, за конечное время вырастает до бесконечности. Проведенный анализ статистики катастроф XX века показал, что статистика землетрясений, наводнений, ураганов, биржевых крахов, ущерба от утечки конфиденциальной информации и многих других подчиняется степенным распределениям. Из свойств этих распределений следует, что вероятность появления катастрофических событий значительно выше, чем это следует из нормального закона распределения вероятностей, который до недавнего времени использовался при анализе рисков катастрофически неблагоприятных исходов. Из нормального закона следует, например, что вероятность отклонения случайной величины от среднего значения более чем на три среднеквадратичных отклонений составляет менее 0,001, и параметры катастрофического события практически невозможны. Однако фактическая частота появления катастрофических событий показывает, что это не так. Распределение вероятностей описанных выше событий качественно отличается от нормального распределения, имеют место распределения с так называемыми хвостами, когда вероятность больших отклонений от среднего значения не является пренебрежимо малой величиной.

Еще одно направление исследований в области прогнозирования динамических систем связано с искусственными нейронными сетями, которые оказались эффективным инструментом обработки информации для описания систем, для которых традиционные методы прогнозирования неэффективны.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]