- •09.03.01 Информатика и вычислительная техника
- •Глава 1 Общие сведения о теории принятия решений
- •1.1 Понятия, связанные с принятием решений
- •1.2 Определенность результатов принимаемых решений
- •1.3 Критерии оценки решения
- •5 Реальные процедуры принятия управленческих решений.
- •1.4 Системы поддержки принятия решения
- •1.5 Математическое моделирование при принятии решений
- •1.6 Классификация математических моделей структурированных систем
- •1.7 Задачи моделирования на различных уровнях принятия решений
- •Глава 2 Системы поддержки принятия решений, основанные на знаниях
- •2.1 Способы описания знаний
- •2.2 Когнитивные модели
- •2.3 Онтологические модели процесса принятия решений
- •Ниже приведены краткие сведения об онтологиях и пример их использования для моделирования процессов принятия решений в системах обучения. Слово «онтология» имеет два значения:
- •Методология создания онтологий. Практическая разработка онтологии включает:
- •2.4 Экспертный подход к принятию решений
- •2.4.1 Методы экспертных оценок
- •2.4.2 Методы средних баллов при оценке альтернатив
- •2.5 Продукционные модели знаний
- •2.5.1 Основные определения
- •2.5.2 Байесовский подход к построению продукционных моделей знаний
- •2.5.3 Структура базы знаний и алгоритм логического вывода
- •Глава 3 Методы оптимизации в задачах принятия решений
- •3.1 Принятие решений на основе методов линейного программирования
- •3.2 Математическая модель планирования производства
- •3.3 Задачи оптимального планирования производства
- •3.4 Транспортная задача
- •3.5 Задачи об упаковке
- •3.5.1 Задача о рюкзаке
- •3.5.2 Задачи упаковки в контейнеры
- •3.6 Задачи о замене оборудования
- •3.6.1 Простейшая задача о замене оборудования
- •3.6.2 Задача об оптимальных сроках замены дискового оборудования
- •3.7 Многокритериальные задачи принятия решений
- •Глава 4 Вероятностные модели формирования и выбора альтернатив решений
- •4.1 Моделирование систем на основе формализма цепей Маркова
- •4.1.1 Определение и динамика цепи Маркова
- •4.1.2 Оценка длительности пребывания процесса во множестве невозвратных состояний
- •4.1.3 Оценка поведения цепей Маркова при большом числе шагов
- •4.2 Модель процесса обучения как цепь Маркова
- •4.3 Система обслуживания заявок с очередью и отказами
- •4.4 Модель динамики информационных ресурсов
- •4.5 Принятие решений об оптимизации инвестиционного портфеля
- •4.6 Имитационное моделирование при принятии решений
- •4.6.1 Система AnyLogic: активные объекты, классы и экземпляры активных объектов
- •4.6.2 Объектно-ориентированный подход
- •4.6.3 Средства описания поведения объектов
- •4.6.4 Анимация поведения и интерактивный анализ модели
- •4.6.5 Примеры имитационного моделирования
- •Глава 5 Сетевые модели поддержки принятия решений
- •5.1 Обыкновенные сети Петри
- •5.1.1 Формальное определение
- •5.1.2 Графы сетей Петри
- •5.1.3 Пространство состояний сети Петри
- •5.1.4 Основные свойства сетей Петри
- •5.1.5 Некоторые обобщения сетей Петри
- •5.1.6 Инварианты сетей Петри
- •5.2 Раскрашенные (цветные) сети Петри (cpn)
- •5.2.1 Мультимножества
- •5.2.2 Формальное определение cpn
- •5.2.3 Функционирование cpn
- •5.2.4 Расширения cpn
- •5.2.5 Сравнение формализмов обыкновенных и раскрашенных сетей Петри
- •5.2.6 О моделирующих возможностях сетей Петри
- •5.3 Моделирование дискретных систем
- •5.3.1 Моделирование вычислительных систем
- •4.3.2 Моделирование программ
- •5.3.3 Моделирование протоколов передачи данных
- •5.3.4. Об исследовании сетей Петри с помощью эвм
- •5.4 Герт-сети
- •5.4.1 Описание герт-сети
- •5.4.2 Производящие функции герт-сетей
- •5.4.3 Вычисление w-функций для типовых соединений дуг
- •5.4.4 Модель процесса обучения как герт-сеть
- •Глава 6 Примеры систем поддержки принятия решений
- •6.1 Система эспла
- •6.1.1 Режимы функционирования системы
- •6.1.2 Принятие решений при техногенных авариях
- •6.1.3 Использование информационных ресурсов
- •6.2 Информационная система дистанционного мониторинга лесных пожаров Федерального агентства лесного хозяйства рф
- •6.2.1 Общая характеристика системы
- •6.2.2 Использование спутниковых данных
- •6.2.3 Центры приема и обработки спутниковых данных
- •6.2.4 Информационные продукты, формируемые системой
- •6.2.5 Прогнозирование параметров лесных пожаров по данным исдм-Рослесхоз
- •Г.А. Доррер методы и системы принятия решений
- •Красноярск 2016
1.2 Определенность результатов принимаемых решений
По степени определенности ожидаемые результаты принятия решений могут значительно отличаться.
До 60-х годов XX века предполагалось, что есть два класса процессов. К первому классу относились процессы, которые описываются динамическими системами, где будущее однозначно определяется прошлым (детерминированные системы). Детерминированные системы – это системы, в которых все данные и все взаимосвязи определены точно и однозначно, а результат принятия решения может быть просчитан заранее с необходимой точностью. Иначе говоря, для таких систем имеется полная предсказуемость, и мы можем заглянуть как угодно далеко в будущее и как угодно далеко в прошлое. На практике к детерминированным системам близки системы с хорошо изученными процессами, например, в машиностроении, когда технические характеристики создаваемой машины можно достаточно точно просчитать при проектировании.
Второй класс процессов – это процессы, где будущее не полностью зависит от прошлого и определяется случайными факторами (вероятностные или стохастические системы). Системы с вероятностным поведением – это системы, в которых часть параметров или взаимосвязей точно не определена, но известны вероятностные законы, которым они подчиняются. При принятии решения о поведении таких систем мы не можем точно указать, какими будут результаты, но можем гарантированно определить диапазон возможных значений и их вероятности. Примером такой системы может служить самолет, летящий в турбулентной атмосфере. Аэродинамика самолета обычно известна достаточно точно, а характеристики атмосферы могут быть описаны только на языке теории случайных процессов, в результате чего и динамика самолета будет описана вероятностно.
В 70-е годы прошлого века стало понятно, что есть третий класс процессов, которые формально описываются динамическими системами, но при этом их поведение может быть предсказано только на небольшом интервале времени. Были пересмотрены взгляды на принципиальную возможность предсказуемости. В 1963 году был введен термин горизонт прогноза или предел предсказуемости. Для существования горизонта прогноза не нужно, чтобы «Бог играл в кости», как писал Альберт Эйнштейн, добавляя в уравнения, описывающие реальность, случайные члены. Оказалось, что объекты, поведение которых невозможно предсказать на достаточно большие времена, могут быть очень простыми. Было показано, что чувствительность системы к начальным данным может вести к хаосу. Это явление получило название эффекта бабочки (по рассказу Рея Бредбери), который связан с тем, что малые причины могут привести к большим последствиям. Так, например, несмотря на совершенствование в течение десятков лет математических моделей, использование сверхмощных компьютеров, разработку новых численных методов и совершенствование систем наземного, воздушного и космического мониторинга за состоянием погоды, не удалось разработать эффективную методику ее среднесрочного (на 2-3 недели вперед) прогноза для конкретных географических точек земной поверхности. Горизонт прогноза для состояния океана эксперты оценивают в месяц. В этих случаях «взмах бабочки» в конкретной точке в некоторый момент времени может привести к ураганам и изменению погоды в огромном регионе. Экономические прогнозы, опирающиеся на представления о хаосе, стали бурно развивающейся областью деятельности, однако и они не смогли предсказать финансовые кризисы 2008 и 2015 годов.
Одно из новых направлений исследования сложных динамических систем связано с предсказанием редких катастрофических событий. Оказалось, что самые разные катастрофические события могут развиваться по близким законам, например, фондовый рынок и тектонический разлом – незадолго перед катастрофой. В обоих случаях есть быстрый катастрофический рост, на который накладываются ускоряющиеся колебания. Это так называемые режимы с обострением, когда одна или несколько величин, характеризующих систему, за конечное время вырастает до бесконечности. Проведенный анализ статистики катастроф XX века показал, что статистика землетрясений, наводнений, ураганов, биржевых крахов, ущерба от утечки конфиденциальной информации и многих других подчиняется степенным распределениям. Из свойств этих распределений следует, что вероятность появления катастрофических событий значительно выше, чем это следует из нормального закона распределения вероятностей, который до недавнего времени использовался при анализе рисков катастрофически неблагоприятных исходов. Из нормального закона следует, например, что вероятность отклонения случайной величины от среднего значения более чем на три среднеквадратичных отклонений составляет менее 0,001, и параметры катастрофического события практически невозможны. Однако фактическая частота появления катастрофических событий показывает, что это не так. Распределение вероятностей описанных выше событий качественно отличается от нормального распределения, имеют место распределения с так называемыми хвостами, когда вероятность больших отклонений от среднего значения не является пренебрежимо малой величиной.
Еще одно направление исследований в области прогнозирования динамических систем связано с искусственными нейронными сетями, которые оказались эффективным инструментом обработки информации для описания систем, для которых традиционные методы прогнозирования неэффективны.
