- •09.03.01 Информатика и вычислительная техника
- •Глава 1 Общие сведения о теории принятия решений
- •1.1 Понятия, связанные с принятием решений
- •1.2 Определенность результатов принимаемых решений
- •1.3 Критерии оценки решения
- •5 Реальные процедуры принятия управленческих решений.
- •1.4 Системы поддержки принятия решения
- •1.5 Математическое моделирование при принятии решений
- •1.6 Классификация математических моделей структурированных систем
- •1.7 Задачи моделирования на различных уровнях принятия решений
- •Глава 2 Системы поддержки принятия решений, основанные на знаниях
- •2.1 Способы описания знаний
- •2.2 Когнитивные модели
- •2.3 Онтологические модели процесса принятия решений
- •Ниже приведены краткие сведения об онтологиях и пример их использования для моделирования процессов принятия решений в системах обучения. Слово «онтология» имеет два значения:
- •Методология создания онтологий. Практическая разработка онтологии включает:
- •2.4 Экспертный подход к принятию решений
- •2.4.1 Методы экспертных оценок
- •2.4.2 Методы средних баллов при оценке альтернатив
- •2.5 Продукционные модели знаний
- •2.5.1 Основные определения
- •2.5.2 Байесовский подход к построению продукционных моделей знаний
- •2.5.3 Структура базы знаний и алгоритм логического вывода
- •Глава 3 Методы оптимизации в задачах принятия решений
- •3.1 Принятие решений на основе методов линейного программирования
- •3.2 Математическая модель планирования производства
- •3.3 Задачи оптимального планирования производства
- •3.4 Транспортная задача
- •3.5 Задачи об упаковке
- •3.5.1 Задача о рюкзаке
- •3.5.2 Задачи упаковки в контейнеры
- •3.6 Задачи о замене оборудования
- •3.6.1 Простейшая задача о замене оборудования
- •3.6.2 Задача об оптимальных сроках замены дискового оборудования
- •3.7 Многокритериальные задачи принятия решений
- •Глава 4 Вероятностные модели формирования и выбора альтернатив решений
- •4.1 Моделирование систем на основе формализма цепей Маркова
- •4.1.1 Определение и динамика цепи Маркова
- •4.1.2 Оценка длительности пребывания процесса во множестве невозвратных состояний
- •4.1.3 Оценка поведения цепей Маркова при большом числе шагов
- •4.2 Модель процесса обучения как цепь Маркова
- •4.3 Система обслуживания заявок с очередью и отказами
- •4.4 Модель динамики информационных ресурсов
- •4.5 Принятие решений об оптимизации инвестиционного портфеля
- •4.6 Имитационное моделирование при принятии решений
- •4.6.1 Система AnyLogic: активные объекты, классы и экземпляры активных объектов
- •4.6.2 Объектно-ориентированный подход
- •4.6.3 Средства описания поведения объектов
- •4.6.4 Анимация поведения и интерактивный анализ модели
- •4.6.5 Примеры имитационного моделирования
- •Глава 5 Сетевые модели поддержки принятия решений
- •5.1 Обыкновенные сети Петри
- •5.1.1 Формальное определение
- •5.1.2 Графы сетей Петри
- •5.1.3 Пространство состояний сети Петри
- •5.1.4 Основные свойства сетей Петри
- •5.1.5 Некоторые обобщения сетей Петри
- •5.1.6 Инварианты сетей Петри
- •5.2 Раскрашенные (цветные) сети Петри (cpn)
- •5.2.1 Мультимножества
- •5.2.2 Формальное определение cpn
- •5.2.3 Функционирование cpn
- •5.2.4 Расширения cpn
- •5.2.5 Сравнение формализмов обыкновенных и раскрашенных сетей Петри
- •5.2.6 О моделирующих возможностях сетей Петри
- •5.3 Моделирование дискретных систем
- •5.3.1 Моделирование вычислительных систем
- •4.3.2 Моделирование программ
- •5.3.3 Моделирование протоколов передачи данных
- •5.3.4. Об исследовании сетей Петри с помощью эвм
- •5.4 Герт-сети
- •5.4.1 Описание герт-сети
- •5.4.2 Производящие функции герт-сетей
- •5.4.3 Вычисление w-функций для типовых соединений дуг
- •5.4.4 Модель процесса обучения как герт-сеть
- •Глава 6 Примеры систем поддержки принятия решений
- •6.1 Система эспла
- •6.1.1 Режимы функционирования системы
- •6.1.2 Принятие решений при техногенных авариях
- •6.1.3 Использование информационных ресурсов
- •6.2 Информационная система дистанционного мониторинга лесных пожаров Федерального агентства лесного хозяйства рф
- •6.2.1 Общая характеристика системы
- •6.2.2 Использование спутниковых данных
- •6.2.3 Центры приема и обработки спутниковых данных
- •6.2.4 Информационные продукты, формируемые системой
- •6.2.5 Прогнозирование параметров лесных пожаров по данным исдм-Рослесхоз
- •Г.А. Доррер методы и системы принятия решений
- •Красноярск 2016
3.4 Транспортная задача
В качестве следующего примера задачи оптимизации при принятии решений рассмотрим так называемую транспортную задачу, которая также часто встречается на практике [26].
Задача формулируется следующим образом. Имеются склады, запасы на которых известны. Известны потребители и объемы их потребностей. Необходимо доставить товар со складов потребителям. Можно по-разному организовать «прикрепление» потребителей к складам, т.е. установить, с какого склада какому потребителю и сколько вести. Кроме того, известна стоимость доставки единицы товара с определенного склада определен-ному потребителю. Требуется минимизировать издержки по перевозке.
Пусть имеется
складов, на каждом из которых имеется
запас продукции
,
и
потребителей, потребности каждого
составляют
,
,
при этом предполагается, что суммарные
запасы на складах и суммарные потребности
потребителей совпадают:
. (3.41)
Стоимость доставки
единицы товара со склада номер
потребителю номер
составляет
рублей.
Обозначим
количество
товаров, поставляемых со склада номер
потребителю номер
,
,
.
Должны выполниться следующие условия.
Все товары со складов должны быть вывезены:
,
. (3.42)
Все потребители должны быть удовлетворены:
,
. (3.43)
Все
должны
быть неотрицательными:
.
Принятие решение заключается в составлении плана перевозок, т.е. выборе объемов поставок товара со склада потребителю . При этом суммарные затраты на перевозку должны быть минимальными:
. (3.44)
Пример. Рассмотрим решение транспортной задачи, исходные данные к которой представлены в таблице 2.7.
Таблица 3.4
Исходные данные к транспортной задаче
|
потре-битель 1 |
потре-битель 2 |
потре-битель 3 |
потре-битель 4 |
запасы на складах |
Склад 1 |
2 |
5 |
5 |
5 |
60 |
Склад 2 |
1 |
2 |
1 |
4 |
80 |
Склад 3 |
3 |
1 |
5 |
2 |
60 |
Потребности |
50 |
40 |
70 |
40 |
200 |
В приведенной
таблице, кроме объемов потребностей и
величин запасов, указаны стоимости
доставки единицы товара
со склада
потребителю
(
,
).
Таким образом, всего в задаче имеется 12 переменных . Они удовлетворяют двум группам ограничений.
Во-первых, заданы запасы на складах:
(3.45)
Во-вторых, известны потребности клиентов:
(3.46)
Итак, всего имеется 7 ограничений типа равенств. Кроме того, все переменные неотрицательны – еще 12 ограничений.
Целевая функция – стоимость перевозки, которую необходимо минимизировать, имеет вид:
(3.47)
В литературе рассматриваются различные варианты постановки и решения транспортной задачи. Количество переменных и ограничений в транспортной задаче обычно достаточно велико, и для ее решения разработаны специальные алгоритмы, реализованные в соответствующих программах. Такие программы обычно входят в популярные математические пакеты, их можно также найти в Интернете.
В нашем примере оптимальный план перевозок выглядит следующим образом.
Мы видим, что все ограничения (2.48) и (2.49) выполнены, а общие затраты на перевозку товаров составили Fopt=330 единиц.
