- •Начертательная геометрия и инженерная графика
- •Часть 1 Начертательная геометрия Курс лекций
- •08.05.01 «Строительство уникальных зданий и сооружений»
- •Предисловие
- •Лекция 1. Введение в начертательную геометрию. Метод проекций
- •1.1. Цель, задачи и предмет изучения начертательной геометрии
- •1.2. Используемые обозначения и символы
- •1.3. Понятие о проецировании
- •1.4. Инвариантные свойства проецирования
- •1.5. Контрольные вопросы
- •Лекция 2. Точка на эпюре монжа
- •2.1. Аппарат полного проецирования
- •2.2. Эпюр точки
- •2.3. Характеристика точек
- •2.4. Контрольные вопросы
- •Лекция 3. Точка на эпюре монжа
- •3.1. Метод двух изображений
- •3.2. Конкурирующие точки
- •3.3. Прямая и обратная задача
- •3.4. Определение недостающих проекций точки.
- •3.5. Контрольные вопросы
- •Лекция 4. Прямая на эпюре монжа
- •4.1. Задание прямой на эпюре
- •4.2. Характеристика прямых
- •4.3. Определение точки принадлежащей прямой
- •4.4. Деление отрезка прямой в заданном соотношении
- •4.4. Контрольные вопросы
- •Лекция 5. Прямая на эпюре монжа
- •5.1. Определение длины отрезка прямой общего положения и углов наклона прямой к плоскостям проекций
- •5.2. Следы прямой линии
- •5.3. Взаимное расположение прямых
- •5.4. Теорема о прямом угле
- •5.5. Контрольные вопросы
- •Лекция 6. Плоскость на эпюре монжа
- •6.1. Способы задание плоскости на эпюре
- •6.2. Характеристика плоскостей
- •6.3. Определение следов плоскости
- •6.4. Принадлежность прямой плоскости
- •6.5. Принадлежность точки плоскости
- •6.6. Контрольные вопросы
- •Лекция 7. Позиционные задачи
- •7.1. Главные прямые плоскости
- •7.2. Построение линии пересечения проецирующей плоскости с плоскостью общего положения
- •7.3. Определение точки встречи прямой с плоскостью
- •7.4. Контрольные вопросы
- •Лекция 8. Позиционные задачи
- •8.1. Построение линии пересечения плоскостей общего положения
- •8.2. Построение перпендикуляра к плоскости, проходящего через заданною точку
- •8.3. Построение плоскости, проходящей через заданную точку и перпендикулярно заданной прямой
- •8.4. Построение прямой параллельной заданной плоскости
- •8.5. Перпендикулярность и параллельность плоскостей
- •8.6. Контрольные вопросы
- •Лекция 9. Метрические задачи
- •9.1. Общие сведения о метрических задачах
- •9.2. Суть способа замены плоскостей проекций
- •9.3. Основные задачи, решаемые способом замены плоскостей.
- •9.4. Способ вращения вокруг проецирующей прямой
- •9.5. Контрольные вопросы
- •Лекция 10. Метрические задачи
- •10.1. Основные задачи, решаемые способом вращения вокруг проецирующей прямой.
- •10.2 Способ плоско параллельного перемещения
- •10.3. Определение натуральных величин геометрических объектов
- •10.4. Контрольные вопросы
- •Лекция 11. Поверхности
- •11.1. Многогранники
- •11.2. Задание многогранников на эпюре Монжа
- •11.3. Классификация поверхностей
- •11.4. Задание поверхностей вращения на эпюре Монжа
- •11.5. Контрольные вопросы
- •Лекция 12. Поверхности
- •12.1. Виды сечений
- •12.2. Построение сечения проецирующей плоскостью
- •12.3. Пересечение прямой с поверхностью
- •12.4. Контрольные вопросы
- •Лекция 13. Пересечение поверхностей
- •13.1. Общие сведения
- •13.2. Пересечение многогранников
- •13.3. Пересечение многогранника с поверхностью второго рода
- •13.4. Контрольные вопросы.
- •Лекция 14. Пересечение поверхностей второго порядка
- •14.1. Способ вспомогательных плоскостей
- •14.2. Теорема Монжа. Частные случаи
- •14.3. Способ вспомогательных сфер
- •14.4. Контрольные вопросы.
- •Лекция 15. Развертки
- •15.1. Общие сведения
- •15.2. Развертка пирамиды
- •15.3. Развертка призмы
- •15.4. Развертка конической поверхности общего вида
- •15.5. Контрольные вопросы
- •Лекция 16. Развертки
- •16.1. Развертка наклонного цилиндра
- •16.2. Частные случаи разверток
- •16.3. Развертка сферы
- •16.4. Контрольные вопросы
- •Лекция 17. Аксонометрия
- •17.1. Общие сведения об аксонометрии
- •17.2. Прямоугольная изометрическая проекция
- •17.3. Прямоугольная диметрическая проекция
- •17.4. Построение аксонометрического изображения тел
- •16.4. Контрольные вопросы
- •Лекция 18. Построение третьего вида и аксонометрии тел с отверстием
- •18.1. Общая методика построения выреза.
- •18.1. Построение выреза в цилиндре.
- •18.2. Построение выреза в призме.
- •18.4. Построение выреза в пирамиде.
- •18.5. Построение выреза в конусе.
- •18.6. Контрольные вопросы.
- •Заключение
- •Библиографический список
- •Оглавление
- •Часть 1
- •4 40028, Г. Пенза, ул. Германа Титова, 28.
Лекция 5. Прямая на эпюре монжа
5.1. Определение длины отрезка прямой общего положения и углов наклона прямой к плоскостям проекций.
5.2. Следы прямой линии.
5.3. Взаимное расположение прямых.
5.4. Теорема о прямом угле.
5.5. Контрольные вопросы.
5.1. Определение длины отрезка прямой общего положения и углов наклона прямой к плоскостям проекций
Определения натуральной величины отрезка прямой общего положения осуществляется путем построения на эпюре прямоугольный треугольника, одним катетом которого является проекция отрезка на какую-либо плоскость проекций, а величина другого катета равна разности расстояний концов отрезка от этой плоскости проекций. Натуральная величина отрезка прямой будет равна гипотенузе этого треугольника. Угол между катетом–проекцией и гипотенузой равен углу наклона отрезка к этой плоскости проекций.
На рис. 40 показано проецирование отрезка [АВ]. Через точку А проведена прямая АВ0, параллельная горизонтальной проекции отрезка А1В1. В полученном прямоугольном треугольнике АВВ0 катеты АВ0 равен проекции А1В1, а ВВ0 равен разности расстояний концов отрезка от плоскости проекций π1 (). Гипотенуза этого треугольника равна длине отрезка [АВ]. Угол в треугольнике АВВ0 является углом наклона отрезка прямой [АВ] к плоскости π1.
Рис. 40
Для определения угла наклона отрезка прямой [АВ] к фронтальной плоскости проекций π2 строят прямоугольный треугольник (рис. 41) аналогичным путем, только за катеты принимаются проекция отрезка А2В2 и разность расстояний концов отрезка от плоскости проекций π2 (∆у).
Рис. 41
5.2. Следы прямой линии
Прямая общего положения пересекает все плоскости проекций. Точки пересечения прямой линии с плоскостями проекций называют следами прямой (рис 42). Точка М – горизонтальный след прямой, точка N – фронтальный. Горизонтальная проекция М1 горизонтального следа прямой совпадает с самим следом – точкой М, а фронтальная проекция этого следа М2 лежит на оси ОХ (рис. 43). Фронтальная проекция N2 фронтального следа прямой совпадает с точкой N, а горизонтальная проекция N1 лежит на оси ОХ.
Рис. 42 Рис. 43
Для построения горизонтального следа М прямой (рис. 43) необходимо продолжить фронтальную проекцию прямой до пересечения с осью ОХ и по принадлежности точки прямой определяем недостающею проекцию горизонтального следа.
Для построения фронтального следа N прямой продолжаем горизонтальную проекцию прямой до пересечения с осью ОХ и по принадлежности точки прямой определяем недостающею проекцию фронтального следа.
5.3. Взаимное расположение прямых
Прямые в пространстве относительно друг друга могут располагаться тремя способами (рис. 44): быть взаимно параллельными (l∥k); пересекаться (m∩n=A); скрещиваться (v∸d).
а) б) в)
Рис. 44
Если прямые общего положения взаимно параллельны, то на основании инварианта параллельности прямых следует признак параллельности прямых по эпюру (рис. 44а): одноимённые проекции прямых на всех плоскостях проекций будут взаимно параллельны.
Если прямые пересекаются, то на основании инварианта точки пересечения двух линий следует признак по эпюру (рис. 44б): точки пересечения одноимённых проекций прямых лежат на общих линиях связи.
Если прямые скрещиваются, то на эпюре (рис. 44в): точке пересечения одноимённых проекций прямых на одной плоскости проекций соответствуют проекции двух разных точек на другой плоскости проекций. Например, общей точке M1≡N1 пересечения горизонтальных проекций прямых соответствуют разные точки M2v2 и N2d2 на фронтальной плоскости проекций.
