- •Законы Менделя.
- •Взаимодействие аллелей одного гена.
- •Митохондриальный или цитоплазматический тип наследования
- •Генетическое значение митоза и мейоза
- •Хромосомы человека.
- •Условия выполнения законов Менделя.
- •Цитологические основы наследственности.
- •Клонирование генов.
- •Работа с микроорганизмами
- •15. Развитие представлений о гене.
- •Конъюгация - прямой контакт двух разнокачественных клеток, сопровождаемый хотя бы частичным переносом генетического материала от клетки-донора к клетке-реципиенту.
- •Трансдукция - перенос генетического материала с помощью вирусов из клетки-донора в клетку-реципиент.
- •18. Механизмы онтогенетической изменчивости.
- •20. Хромосомные перестройки.
- •21. Принципы построения генетических карт.
- •22. Матричные процессы у эукариот и прокариот.
- •23. Инбридинг и гетерозис.
- •24. Универсальные свойства генетического материала.
- •25. Генная инженерия.
- •26. Проблемы экологической генетики.
- •27. Моногенные болезни человека.
- •28. Полигибридное скрещивание.
- •29. Цитологический метод в генетике человека.
- •30. Врожденные аномалии развития.
- •2. 1952Г. Эксперимент Альфреда Херши и Марты Чейз.
- •36. Факторы генетической динамики популяции.
- •37. Повторяющиеся последовательности в геноме человека.
- •38. Оперон и его работа
- •39. Тесты на аллелизм: правила и исключения.
- •44. Сцепленное с полом наследование.
- •45. Причины отклонения от законов Менделя.
- •46. Рестрикционное картирование.
- •47. Внутригенное картирование.
- •48. Клонирование нуклеотидных последовательностей.
- •49. Полиплоидия.
- •50. Генетика количественных признаков.
- •51. Хромосомные болезни человека.
- •52. Метод родословных.
- •53. Цитологические карты человека.
- •54. Молекулярные методы идентификации личности.
- •55. Модификационная изменчивость.
- •56. Трансляция. Генетический код.
- •Генетический код, активация аминокислот
- •Транскрипция
- •Созревание рнк
- •60. Особенности генетики человека.
Хромосомы человека.
Хромосомы — это основные структурные элементы клеточного ядра, являющиеся носителями генов, в которых закодирована наследственная информация. Обладая способностью к самовоспроизведению, хромосомы обеспечивают генетическую связь поколений.
Основной составляющей каждой хромосомы является ДНК, а гены - это основные составляющие хромосомной ДНК. Молекула каждой хромосомы очень длинная, поэтому для компактности она плотно намотанная на специфические белки-гистоны. Это явление называется суперскручивание или суперкомпактизация. Морфология хромосом связана со степенью их спирализации. Например, если в стадии интерфазы (см. Митоз, Мейоз) хромосомы максимально развернуты, т. е. деспирализованы, то с началом деления хромосомы интенсивно спирализуются и укорачиваются. Максимальной спирализации и укорочения хромосомы достигают в стадии метафазы, когда происходит формирование относительно коротких, плотных, интенсивно окрашивающихся основными красителями структур. Эта стадия наиболее удобна для изучения морфологических характеристик хромосом.
Метафазная хромосома состоит из двух продольных субъединиц — хроматид [электронная микроскопия выявляет в строении хромосом элементарные нити (так называемые хромонемы, или хромофибриллы) толщиной 200 Å, каждая из которых состоит из двух субъединиц].
Химической основой строения хромосом являются нуклеопротеиды — комплексы нуклеиновых кислот с основными белками — гистонами и протаминами.
Почти в центре каждой хромосомы содержится ее центромера, небольшой участок, которая делит хромосому на две части, образуя при этом длинное плечо (q) и короткое плечо (р). Индивидуальные хромосомы (рис. 1) различают по локализации центромеры (во время митоза и мейоза к этому месту прикрепляются нити веретена, подтягивая ее при этом к полюсу). При утрате центромеры фрагменты хромосом утрачивают способность расходиться при делении. В зависимости от расположения первичной перетяжки хромосомы подразделяют на метацентрические (оба плеча равной или почти равной длины), субметацентрические (плечи неравной длины) и акроцентрические (центромера смещена на конец хромосомы). Помимо первичной, в хромосомах могут встречаться менее выраженные вторичные перетяжки. Небольшой концевой участок хромосом, отделенный вторичной перетяжкой, называют спутником.
Кроме того, для более детального и точного исследования хромосом используется метод окраски хромосом специальными красителями, использование которых вызывает образование характерной полосатой структуры. Каждая хромосома имеет уникальную четкую полосатую структуру, а каждая полоска имеет номер, который помогает определить (локализировать) конкретную часть хромосомы (локус).
Каждый вид организмов характеризуется своим специфическим (по числу, размерам и форме хромосом) так называемым хромосомным набором. Совокупность двойного, или диплоидного, набора хромосом обозначают как кариотип.
В зрелых половых клетках, яйцеклетках и сперматозоидах содержится одиночный, или гаплоидный, набор хромосом (n), составляющий половину диплоидного набора (2n), присущего хромосомам всех остальных клеток организма. В диплоидном наборе каждая хромосома представлена парой гомологов, один из которых материнского, а другой отцовского происхождения. В большинстве случаев хромосомы каждой пары идентичны по размерам, форме и генному составу. Исключение составляют половые хромосомы, наличие которых определяет развитие организма в мужском или женском направлении. Нормальный хромосомный набор человека состоит из 22 пар аутосом и одной пары половых хромосом. У человека и других млекопитающих женский пол определяется наличием двух Х-хромосом, а мужской — одной X-и одной Y-хромосомы (рис. 2 и 3). В женских клетках одна из Х-хромосом генетически неактивна и обнаруживается в интерфазном ядре в виде полового хроматина.
Изучение хромосом человека в норме и патологии составляет предмет медицинской цитогенетики. Установлено, что отклонения в числе или структуре хромосом от нормы, возникающие в половых клетках или на ранних этапах дробления оплодотворенной яйцеклетки, вызывают нарушения нормального развития организма, обусловливая в некоторых случаях возникновение части спонтанных абортов, мертворождений, врожденных уродств и аномалий развития после рождения (хромосомные болезни). Примерами хромосомных болезней могут служить болезнь Дауна (лишняя G-хромосома), синдром Клайнфелтера (лишняя Х-хромосома у мужчин) и Шерешевского — Тернера (отсутствие в кариотипе Y- или одной из Х-хромосом). В медицинской практике хромосомный анализ проводят или прямым методом (на клетках костного мозга), или после кратковременного культивирования клеток вне организма (периферическая кровь, кожа, эмбриональные ткани).
