- •Законы Менделя.
- •Взаимодействие аллелей одного гена.
- •Митохондриальный или цитоплазматический тип наследования
- •Генетическое значение митоза и мейоза
- •Хромосомы человека.
- •Условия выполнения законов Менделя.
- •Цитологические основы наследственности.
- •Клонирование генов.
- •Работа с микроорганизмами
- •15. Развитие представлений о гене.
- •Конъюгация - прямой контакт двух разнокачественных клеток, сопровождаемый хотя бы частичным переносом генетического материала от клетки-донора к клетке-реципиенту.
- •Трансдукция - перенос генетического материала с помощью вирусов из клетки-донора в клетку-реципиент.
- •18. Механизмы онтогенетической изменчивости.
- •20. Хромосомные перестройки.
- •21. Принципы построения генетических карт.
- •22. Матричные процессы у эукариот и прокариот.
- •23. Инбридинг и гетерозис.
- •24. Универсальные свойства генетического материала.
- •25. Генная инженерия.
- •26. Проблемы экологической генетики.
- •27. Моногенные болезни человека.
- •28. Полигибридное скрещивание.
- •29. Цитологический метод в генетике человека.
- •30. Врожденные аномалии развития.
- •2. 1952Г. Эксперимент Альфреда Херши и Марты Чейз.
- •36. Факторы генетической динамики популяции.
- •37. Повторяющиеся последовательности в геноме человека.
- •38. Оперон и его работа
- •39. Тесты на аллелизм: правила и исключения.
- •44. Сцепленное с полом наследование.
- •45. Причины отклонения от законов Менделя.
- •46. Рестрикционное картирование.
- •47. Внутригенное картирование.
- •48. Клонирование нуклеотидных последовательностей.
- •49. Полиплоидия.
- •50. Генетика количественных признаков.
- •51. Хромосомные болезни человека.
- •52. Метод родословных.
- •53. Цитологические карты человека.
- •54. Молекулярные методы идентификации личности.
- •55. Модификационная изменчивость.
- •56. Трансляция. Генетический код.
- •Генетический код, активация аминокислот
- •Транскрипция
- •Созревание рнк
- •60. Особенности генетики человека.
56. Трансляция. Генетический код.
Генетический код, активация аминокислот
А. Генетический код
Большая часть генетической информации, содержащейся в ДНК, кодирует последовательность аминокислот. Процесс экспрессии генетической информации включает транскрипцию «текста», записанного на «языке нуклеиновой кислоты», в текст, записанный на «языке белков». Таково происхождение термина трансляция (дословно — перевод), используемого для обозначения процесса биосинтеза белков. Правила, которым следует трансляция, называют генетическим кодом.
Поскольку в биосинтезе участвуют 20 аминокислот, называемых протеиногенными, «язык» нуклеиновых кислот должен содержать по крайней мере 20 слов (кодонов) Однако в аминокислотном «алфавите» имеется только четыре «буквы» (А, Г, Ц и У или Т [или в англ. транскрипции: A, G, С и U или Т*]), так что для получения 20 различных слов каждое должно состоять по крайней мере из трех букв. Кодоны действительно включают три азотистых основания (триплет нуклеотидов). На схеме 1 представлен стандартный код ДНК (последовательность триплетов в некодирующей цепи), изображенный в виде круга. Схема читается от центра наружу, так что, например, триплет CAT кодирует аминокислоту гистидин. ДНК-кодоны идентичны таковым в мРНК (mRNA), за исключением того, что в мРНК вместо урацила (U), характерного для ДНК, стоит тимин (Т).
В качестве примера прочтения кода на схеме 2 показаны короткие участки нормального и мутантного гена β-глобина вместе с соответствующими последовательностями мРНК и аминокислот. Здесь показаны относительно часто встречающиеся точковые мутации, в результате которых остаток глутаминовой кислоты в положении 6 β-цепи заменен на валин. Такой мутантный гемоглобин в дезоксиформе склонен к агрегации, что вызывает деформацию эритроцитов и уменьшает эффективность транспорта кислорода (серповидноклеточная анемия).
В триплетном генетическом коде для 20 аминокислот потенциально существует 43 = 64 кодона. Таким образом, большинство аминокислот записывается несколькими кодонами, т. е. генетический код является вырожденным. Кроме того, имеются три триплета, которые обозначают конец транскрипции (стоп-кодоны). Еще один специальный кодон, стартовый (инициирующий) кодон, маркирует начало трансляции. Генетический код, показанный на рисунке, является почти универсальным. Этому стандарту не полностью соответствуют только митохондрии (см. с. 212) и некоторые микроорганизмы.
Б. Активация аминокислот
Для каждой из 20 аминокислот имеется соответствующая аминоацил-тРНК-лигаза, которая в цитоплазме соединяет аминокислоту с тPHK(tRNA) (см. с. 88). Этот процесс активации аминокислот осуществляется в две стадии. Сначала аминокислота связывается с ферментом и реагирует с АТФ (АТР), образуя макроэргический смешанный ангидрид — аминоациладенилат. Затем аминоацильный остаток переносится на концевую 3'-ОН-группу концевого остатка рибозы тРНК (другой группой лигаз аминоацил переносится на 2'-ОН-группу). В аминоацил-тРНК карбоксильная группа аминокислотного остатка этерифицируется остатком рибозы 3'-концевого остатка аденозина, входящего в последовательность ...ССА-3'.
Точность трансляции зависит, прежде всего, от субстратной специфичности аминоацил-тРНК-лигаз.Корректирующий механизм активного центра лигазы обеспечивает немедленное удаление ошибочно присоединенных аминокислотных остатков. В среднем встречается только одна ошибка на 1300 аминокислотных остатков — поразительно высокая точность «работы», если представить, насколько близки структуры некоторых аминокислот.
В. Asp-тРНК-лигаза (димер)
Процесс активации аминокислот представлен на примере лигазы, специфичной для аспарагиновой кислоты. Молекулы фермента (окрашены в оранжевый цвет) связаны между собой в димер, причем каждая субъединица ассоциирована с одной молекулой тРНК (окрашены в голубой цвет). В активном центре присутствует остаток АТФ (окрашен в зеленый цвет), связанный с 3'-концом тРНК Другой домен белка (слева вверху) отвечает за «узнавание» антикодона тРНК.
57. Классификация мутаций.
по уровню возникновения:
генные: инверсии; замены (транзиции и трансверии); дупликации; инсерции; делеции – ведут к сдвигу рамки считывания.
хромосомные: внутрихромосомные – дупликации, делеции, инверсии; межхромосомные – транслокации, транспозиции.
геномные: поли-, анеу-, гаплоидия.
по типу аллельных взаимодействий: рецессивные, доминантные.
по влиянию на жизнеспособность: летальные, вредные, нейтральные, полезные.
по происхождению: спонтанные, индуцибельные.
по месту возникновения: генеративные, соматические.
по фенотипическому проявлению : - биохимические, физиологические, морфологические.
58. Свойства генетического кода.
Генетический код - система "записи" наследственной информации в виде последовательности нуклеотидов в молекулах НК.
Свойства:
Триплетность (кодовое число кратно трем).
Универсальность (генетический код работает одинаково в организмах разного уровня сложности).
Неперекрываемость (один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов, доказательством служит то, что одна мутация приводит к замене одного аминокислотного остатка).
Вырожденность (одной и той же аминокислоте может соответствовать несколько кодонов).
Без запятых (информация считывается непрерывно).
59. Транскрипция и созревания мРНК.
