- •Законы Менделя.
- •Взаимодействие аллелей одного гена.
- •Митохондриальный или цитоплазматический тип наследования
- •Генетическое значение митоза и мейоза
- •Хромосомы человека.
- •Условия выполнения законов Менделя.
- •Цитологические основы наследственности.
- •Клонирование генов.
- •Работа с микроорганизмами
- •15. Развитие представлений о гене.
- •Конъюгация - прямой контакт двух разнокачественных клеток, сопровождаемый хотя бы частичным переносом генетического материала от клетки-донора к клетке-реципиенту.
- •Трансдукция - перенос генетического материала с помощью вирусов из клетки-донора в клетку-реципиент.
- •18. Механизмы онтогенетической изменчивости.
- •20. Хромосомные перестройки.
- •21. Принципы построения генетических карт.
- •22. Матричные процессы у эукариот и прокариот.
- •23. Инбридинг и гетерозис.
- •24. Универсальные свойства генетического материала.
- •25. Генная инженерия.
- •26. Проблемы экологической генетики.
- •27. Моногенные болезни человека.
- •28. Полигибридное скрещивание.
- •29. Цитологический метод в генетике человека.
- •30. Врожденные аномалии развития.
- •2. 1952Г. Эксперимент Альфреда Херши и Марты Чейз.
- •36. Факторы генетической динамики популяции.
- •37. Повторяющиеся последовательности в геноме человека.
- •38. Оперон и его работа
- •39. Тесты на аллелизм: правила и исключения.
- •44. Сцепленное с полом наследование.
- •45. Причины отклонения от законов Менделя.
- •46. Рестрикционное картирование.
- •47. Внутригенное картирование.
- •48. Клонирование нуклеотидных последовательностей.
- •49. Полиплоидия.
- •50. Генетика количественных признаков.
- •51. Хромосомные болезни человека.
- •52. Метод родословных.
- •53. Цитологические карты человека.
- •54. Молекулярные методы идентификации личности.
- •55. Модификационная изменчивость.
- •56. Трансляция. Генетический код.
- •Генетический код, активация аминокислот
- •Транскрипция
- •Созревание рнк
- •60. Особенности генетики человека.
47. Внутригенное картирование.
Генетическое картирование - это определение группы сцепления и положения картируемого гена относительно других генов данной хромосомы. Чем больше генов известно у данного вида, тем точнее результаты этой процедуры. Как правило, число генов в группах сцепления зависит от линейных размеров соответствующих хромосом. Однако, протяженные области конститутивного гетерохроматина (в районе центромеры и теломерных участков) практически не содержат генов и, таким образом, нарушают эту зависимость.
На первом этапе картирования определяют принадлежность гена к той или иной группе сцепления. Как известно, у D. melanogaster вдиплоидном наборе четыре пары хромосом: первая пара — половые хромосомы (XX — у самок, XY — у самцов), вторая, третья и четвертая — аутосомы. Число генов в Y-хромосоме самцов очень мало. Для локализации вновь возникшей мутации необходимо располагать набором маркерных генов для каждой хромосомы. Картирование мутации основывается на анализе ее сцепления с этими маркерами. Например, если интересующая нас мутация наследуется независимо от маркеров второй хромосомы, делается вывод о ее принадлежности к другой группе сцепления.
Скрещивания проводятся до тех пор, пока не удастся выявить сцепленное наследование анализируемой мутации с маркерными мутациями какой-либо хромосомы.
Второй этап картирования подразумевает определение положения гена на хромосоме. Для этого подсчитывают расстояние между этим геном и уже известными, маркерными генами. Для подсчета генетических расстояний проводят специальные скрещивания, в потомстве которых учитывают частоты кроссоверных и некроссоверных особей. Предполагается, что расстояние между двумя генами пропорционально частоте кроссинговера между ними. Следует иметь в виду, что, чем дальше расположены друг от друга гены, тем чаще между ними происходят множественные перекресты и тем больше искажается истинное расстояние между этими генами.
Частая рекомбинация между расположенными далеко друг от друга генами может привести к увеличению числа кроссоверных организмов в потомстве анализирующего скрещивания до 50%, имитируя независимое наследование изучаемых признаков. Поэтому при составлении карт расстояния между далеко расположенными генами следует использовать не непосредственный подсчет числа кроссоверных особей в анализирующих скрещиваниях, а сложение расстояний между многими близко расположенными друг от друга генами, находящимися внутри изучаемого протяженного участка. В этом случае сцепление между далеко расположенными генами можно установить по их сцепленному наследованию с промежуточно-расположенными генами, которые в свою очередь сцеплены между собой. В результате такого метода определения расстояний между генами длины карт хромосом могут превышать 50 морганид.
48. Клонирование нуклеотидных последовательностей.
Клонирование заключается в выделении фрагментов ДНК, встраивании их в нуклеиновую кислоту из другого организма (так называемый вектор), что позволяет получить множество копий каждого фрагмента. В вектор можно встроить фрагмент ДНК размером от десятков до сотен тысяч нуклеотидов. Методы клонирования ДНК описаны в работе Watson J.D. et al., 1992. (см." Генетика и болезни: литература " ).
С помощью обратной транскриптазы на матрице мРНК можно синтезировать кДНК , пригодную для клонирования и анализа. Клоны кДНК (в отличие от клонов геномной ДНК) не содержат последовательностей, соответствующих интронам . Клоны геномной ДНК и кДНК выделены для сотен генов и для тысяч их фрагментов, а также для так называемых анонимных областей генома человека . Выполняющие неизвестную функцию анонимные области - это уникальные участки генома, часто содержащие полиморфные генетические маркеры. На основании полного или частичного определения нуклеотидной последовательности клонированной кДНК определяют аминокислотную последовательность белка и сравнивают с аминокислотными последовательностями известных белков.
В любой клонированный фрагмент можно ввести метку (радиоактивный изотоп, биотин и др.) и использовать его как специфический молекулярный зонд . Радиоактивные зонды выявляют с помощью радиоавтографии, а биотинилированные - с помощью меченого авидина.
Клонирование позволило получить зонды для анализа ДНК, для выявления мутаций, вызывающих заболевания, а также установить последовательность нуклеотидов в ДНК, зная которую можно определить аминокислотную последовательность в белке и приготовить праймеры для амплификации ДНК с помощью ПЦР .
