- •Элементы систем автоматики
- •Введение
- •1. Элементы систем автоматики и их характеристики
- •1.1. Понятие об элементах и их классификация
- •Вопросы для самопроверки
- •1.2. Основные координаты, основные характеристики и математическое описание элементов
- •Вопросы для самопроверки
- •2. Управляемые преобразователи напряжения и тока
- •2.1. Генераторы постоянного тока независимого возбуждения
- •Вопросы для самопроверки
- •2.2. Электромашинные усилители
- •Вопросы для самопроверки
- •2.3. Магнитные усилители с выходом на постоянном токе
- •Вопросы для самопроверки
- •2.4. Управляемые выпрямители
- •Вопросы для самопроверки
- •2.5. Широтно-импульсные преобразователи
- •Вопросы для самопроверки
- •2.6. Трехфазные преобразователи частоты с автономными инверторами
- •Вопросы для самопроверки
- •2.7. Преобразователи частоты с непосредственной связью с сетью
- •Вопросы для самопроверки
- •3. Электрические двигатели
- •3.1. Электрические двигатели постоянного тока независимого возбуждения
- •Вопросы для самопроверки
- •3.2. Асинхронные электрические двигатели
- •Вопросы для самопроверки
Вопросы для самопроверки
Какое преобразование энергии осуществляется генератором постоянного тока при его работе в генераторном режиме?
Назовите основные достоинства преобразовательного агрегата из приводного двигателя переменного тока и генератора постоянного тока.
Назовите основные недостатки преобразовательного агрегата из приводного двигателя переменного тока и генератора постоянного тока.
Как можно регулировать выходную ЭДС генератора постоянного тока?
Перечислите основные допущения, при которых генератор постоянного тока можно считать линейным звеном?
Что обусловливает неоднозначность характеристик управления генератора постоянного тока для случая, когда выходной координатой будет напряжение на обмотке якоря?
Что необходимо принять за выходную координату генератора постоянного тока для того, чтобы исключить неоднозначность характеристик управления?
Какова жесткость внешних характеристик генератора постоянного тока в случае, когда выходной координатой будет ЭДС генератора?
Какому элементарному звену структурной схемы соответствует передаточная функция генератора постоянного тока, когда в качестве выходной координаты звена рассматривается ЭДС обмотки якоря, а в качестве входной напряжение на обмотке возбуждения?
Какие электрические параметры генератора определяют быстродействие генератора постоянного тока при регулировании выходной ЭДС изменением напряжения возбуждения?
Как влияет на быстродействие генератора постоянного тока наличие вихревых токов в элементах конструкции генератора?
Какой вид имеет формула передаточной функции генератора постоянного тока при регулировании выходной ЭДС изменением напряжения возбуждения?
Какой вид имеет формула переходной характеристики генератора постоянного тока при регулировании выходной ЭДС изменением напряжения возбуждения?
Какой вид имеет формула для расчета электромагнитной постоянной времени обмотки возбуждения генератора постоянного тока?
Чему равна частота среза логарифмической амплитудной частотной характеристики генератора постоянного тока при регулировании выходной ЭДС изменением напряжения возбуждения?
Как можно уменьшить электромагнитную постоянную времени обмотки возбуждения генератора постоянного тока?
2.2. Электромашинные усилители
Электромашинные усилители (ЭМУ) используются в качестве регулируемых источников напряжения в различных системах автоматики, обычно в системах регулируемого электропривода постоянного тока. ЭМУ- это электромеханический преобразователь энергии. Он преобразует механическую энергию, поступающую на его вал от приводного двигателя, в электрическую энергию постоянного тока. Конструктивные особенности ЭМУ рассматриваются в /1/. По сравнению с генераторами постоянного тока независимого возбуждения ЭМУ имеют более высокое значение коэффициента усиления мощности сигнала управления. Наиболее распространены ЭМУ поперечного поля.
ЭМУ поперечного поля без поперечной подмагничивающей обмотки приведен на рис. 2.5. Номинальная мощность таких усилителей может быть до 20 кВт.
Статор такого ЭМУ выполняют неявнополюсным. В пазах статора помещают одну или несколько обмоток управления ОУ, компенсационную обмотку ОК, обмотку добавочных полюсов ОДП. Якорь ЭМУ поперечного поля отличается от якоря обычной машины постоянного тока лишь наличием на его коллекторе двух пар щеток: поперечных 1-1 и продольных 2-2. Поперечные щетки замыкаются накоротко. ЭМУ поперечного поля мощностью до 1500 Вт выполняют в одном корпусе с приводным электродвигателем. Если подвести к одной из обмоток управления ОУ небольшую мощность Pу = UуIу и создать поток управления Фу, то при вращении якоря в этом потоке в его проводниках наводится ЭДС Eкз, максимальное значение которой окажется на поперечных щетках 1-1.
Так как щетки 1-1 замкнуты накоротко, даже под действием небольшой Eкз возникает значительный ток Iкз. Последний, проходя по проводникам якоря, вызовет соответствующий поток Фкз, который наводит в тех же самых проводниках якоря выходную ЭДС Eэму, наибольшее значение которой оказывается на продольных щетках 2-2. Так как Iкз и Фкз на один-два порядка больше, чем Фу, величина ЭДС Eэму значительна.
Если к выводам 4-4 подключить нагрузку, то под действием ЭДС Eэму во внешней цепи и по обмотке якоря потечет ток Iэму. Намагничивающая сила, создаваемая этим током, вызовет поток реакции якоря Фр, направленный против потока управления Фу. Если действие потока реакции якоря не устранить, поток Фу будет уменьшен, что приведет к резкому снижению Eкз, а следовательно, и Фкз, то есть ЭМУ не сможет отдать в нагрузку сколько-нибудь существенную мощность. Для того чтобы поток Фр не размагнитил машину, последовательно с обмоткой якоря включают компенсационную обмотку ОК. Ток, протекающий по компенсационной обмотке, создаст поток Фк, компенсирующий поток Фр. Степень компенсации можно изменять путем изменения сопротивления, шунтирующего компенсационную обмотку. Обмотка добавочных полюсов ОДП предназначается для улучшения коммутации под щетками 2-2.
Усиление мощности в ЭМУ происходит в две ступени. На первой ступени происходит усиление от мощности Pу = IуUу до Pкз = EкзIкз на второй - от Pкз до Pэму = EэмуIэму.
Результирующий коэффициент усиления мощности
kp = (Pкз / Pу)(Pэму / Pкз) = Pэму /Pу= kP1kP2,
где kP1=Pкз /Pу; kP2=Pэму / Pкз - коэффициенты усиления на отдельных ступенях.
Коэффициент kp практически может достигать значения 10000, причем kP1 всегда меньше kP1. Результирующий коэффициент усиления мощности может быть выражен и в виде
kp = kuki,
где ku = Eэму / Uу; ki = Iэму / Iу - соответственно коэффициенты усиления напряжения и тока.
Для обеспечения максимального постоянства коэффициентов усиления во всех рабочих режимах магнитная система ЭМУ делается ненасыщенной.
В конструкцию ЭМУ может вводиться дополнительная подмагничивающая обмотка, которая располагается на статоре и включается в цепь тока поперечных щеток 1-1. Наличие этой обмотки при одной и той же выходной мощности снижает требуемое значение тока короткозамкнутых щеток, в связи с чем номинальная мощность усилителя может быть увеличена до 100 кВт.
Гистерезис магнитной цепи ЭМУ, вследствие больших значений коэффициентов усиления, ведет к появлению неоднозначности в характеристиках управления и внешних характеристиках, что показано на рис. 2.5 б, в. Для уменьшения неоднозначности регулировочных и внешних характеристик и снижения замедляющего действия вихревых токов, индуктируемых при изменении магнитного потока, магнитная система ЭМУ выполняется из листов электротехнической стали толщиной 0,35 - 0,5 мм с узкой петлей гистерезиса. Неоднозначность характеристик может быть уменьшена при введении отрицательной обратной связи по выходному напряжению ЭМУ с помощью одной из обмоток управления или путем введения специальной размагничивающей обмотки, питаемой переменным током. Такая обмотка наматывается вокруг спинки статора. При таких мероприятиях характеристики управления и внешние характеристики при инженерных расчетах могут аппроксимироваться прямыми линиями.
В режиме холостого хода в предположении линейности характеристики управления в рассматриваемом диапазоне изменения координат динамика ЭМУ, например, по первой обмотке управления, описывается передаточной функцией
,
где Δeэму (p), Δuу1(p) - изображение приращения выходной ЭДС ЭМУ и соответствующе-го ему приращения напряжения первой обмотки управления; kэму1=(ΔEэму/ΔIу1)(1/Rу1) - коэффициент усиления по напряжению первой обмотки, определяемый по аппроксимированной характеристике управления; Rу1 = Rоу1+Rд1 - активное сопротивление цепи с первой обмоткой управления; Rоу1 - собственное активное сопротивление первой обмотки управления; Rд1 - внешнее добавочное сопротивление в цепи первой обмотки управления; Tу1 = Lоу1 / Rу1 и Tкз = Lя / Rя - электромагнитные постоянные времени соответственно цепи с первой обмоткой управления и короткозамкнутой цепи; Lоу1 - собственная индуктивность первой обмотки управления; Lя - индуктивность обмотки якоря; Rя - активное сопротивление обмотки якоря.
Следует иметь в виду, что приведенная передаточная функция ЭМУ справедлива только при одной задействованной в работе обмотке управления.
Обычно ЭМУ в схемах автоматики имеют несколько обмоток управления, образующих замкнутые через источники управляющих сигналов контуры, по которым могут замыкаться токи в переходных режимах в цепях управления. Эти токи возникают под действием ЭДС взаимоиндукции, наводящихся в обмотках при изменении тока в любой из них, так как они связаны общим магнитным потоком. По правилу Ленца индуктируемые токи препятствуют изменению тока в любой из обмоток, происходящего под действием изменения напряжения управления, приложенного к этой обмотке. Это ведет к ухудшению быстродействия ЭМУ и, соответственно, к увеличению электромагнитных постоянных времени обмоток управления. При этом эквивалентная постоянная времени любой из n обмоток управления будет определяться по формуле
,
где Tоуi = Lоуi / Rоуi - электромагнитная постоянная времени i-й обмотки управления. Здесь Lоуi - собственная индуктивность i-й обмотки управления; Rоуi- собственное активное сопротивление i-й обмотки управления; Rуi - активное сопротивление цепи i-й обмотки управления; i - номер обмотки управления.
Если на вход ЭМУ подают одновременно n управляющих напряжений, каждое из этих напряжений на свою обмотку управления, то приведенное к первой обмотке результирующее напряжение управления Δu'у1:
,
где Δuуi - изменение напряжения на i-й обмотке управления; wуi - число витков i-й обмотки управления.
Для обеспечения хорошего запаса устойчивости систем автоматики, в которых используется ЭМУ, подбором значения Rш устанавливается недокомпенсация реакции якоря, при которой падение напряжения на эквивалентном внутреннем сопротивлении якорной цепи и цепи усилителя при номинальном токе якоря лежит в пределах 5 – 10 % от номинального выходного напряжения. Конструкция ЭМУ, их работа и характеристики более подробно изложены в работах /2, 3/.
