Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
линейная алгебра-1.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.37 Mб
Скачать

Преобразование матрицы билинейной формы при переходе к новому базису. Ранг билинейной формы

Пусть в векторном пространстве V заданы два базиса e = {e1e2, …, en} и f = {f1f2, …, fn}. Пусть A(e) = (аij) и A(f) = (bij) – матрицы билинейной формы A в указанных базисах.

Теорема 11.1. Матрицы A(e) и A(f) билинейной формы A(xy) в базисах {e} и {f} связаны соотношением

A(f) = CtA(e)C, (),

где C – матрица перехода от базиса {e} к базису {f}, а Ct –транспонированная матрица C.

Следствие. Ранг матрицы A(f) равен рангу матрицы A(e).

Это утверждение следует из равенства (): так как С – матрица перехода от одного базиса к другому, то матрица С и матрица Ct– невырожденные, поэтому умножение на них матрицы A(e) не меняет ее ранга.

Определение 11.4. Рангом билинейной формы, заданной в конечномерном векторном пространстве V , называется ранг матрицы этой формы в произвольном базисе пространства V.

Определение 11.5. Билинейная форма называется невырожденной, если ее ранг равен размерности пространства V и вырожденной, если ее ранг меньше размерности пространства V.

Экзаменационный билет № 6

1. Метод Гаусса решения систем линейных уравнений.

http://function-x.ru/systems_gauss.html

Метод Гаусса, называемый также методом последовательного исключения неизвестных, состоит в том, что при помощи элементарных преобразований систему линейных уравнений приводят к такому виду, чтобы её матрица из коэффициентов оказалась трапециевидной или близкой к трапециевидной. Пример такой системы - на рисунке сверху.

В ней, как видим, третье уравнение уже не содержит переменных   и  , а второе уравнение - переменной  .

После того, как матрица системы приняла трапециевидную форму, уже не представляет труда разобраться в вопросе о совместности системы, определить число решений и найти сами решения.

Преимущества метода Гаусса:

  1. при решении систем линейных уравнений с числом уравнений и неизвестных более трёх метод Гаусса не такой громоздкий, как метод Крамера, поскольку при решении методом Гаусса необходимо меньше вычислений;

  2. методом Гаусса можно решать неопределённые системы линейных уравнений, то есть, имеющие общее решение (об этом - в следующей статье в развитии темы), а, используя метод Крамера, можно лишь констатировать, что система неопределённа;

  3. методом Гаусса можно решать системы линейных уравнений, в которых число неизвестных не равно числу уравнений (об этом - также в развитии темы);

  4. метод Гаусса основан на элементарных (школьных) методах - методе подстановки неизвестных и методе сложения уравнений, которых мы коснулись в соответствующей статье.

Благодаря этим преимуществам, именно методом Гаусса чаще всего решаются прикладные задачи на сплавы и смеси, стоимость или удельный вес отдельных товаров в группе товаров и другие, в которых системы линейных уравнений применяются для моделирования реальных объектов физического мира. В конце этой статьи мы решим методом Гаусса задачу на сплавы. Кроме того, метод Гаусса является основой одного из методов нахождения обратной матрицы.

Повторяя школьный метод алгебраического сложения уравнений системы, мы выяснили, что к одному из уравнений системы можно прибавлять другое уравнение системы, причём каждое из уравнений может быть умножено на некоторые числа. В результате получаем систему линейных уравнений, эквивалентную данной. В ней уже одно уравнение содержало только одну переменную, подставляя значение которой в другие уравнений, мы приходим к решению. Такое сложение - один из видов элементарного преобразования системы. При использовании метода Гаусса можем пользоваться несколькими видами преобразований.

Пусть дана система линейных уравнений

Решая системы линейных уравнений школьными способами, мы почленно умножали одно из уравнений на некоторое число, так, чтобы коэффициенты при первой переменной в двух уравнениях были противоположными числами. При сложении уравнений происходит исключение этой переменной. Аналогично действует и метод Гаусса.

Для упрощения внешнего вида решения составим расширенную матрицу системы:

В этой матрице слева до вертикальной черты расположены коэффициенты при неизвестных, а справа после вертикальной черты - свободные члены.

Для удобства деления коэффициентов при переменных (чтобы получить деление на единицу) переставим местами первую и вторую строки матрицы системы. Получим систему, эквивалентную данной, так как в системе линейных уравнений можно переставлять местами уравнения:

С помощью нового первого уравнения исключим переменную x из второго и всех последующих уравнений. Для этого ко второй строке матрицы прибавим первую, умноженную на   (в нашем случае на  ), к третьей – первую строку, умноженную на   (в нашем случае на  ).

Это возможно, так как 

Если бы в нашей системе уравнений было больше трёх, то следовало бы прибавлять и ко всем последующим уравнениям первую строку, умноженную на отношение соответствующих коэффициентов, взятых со знаком минус.

В результате получим матрицу эквивалентную данной системе новой системы уравнений, в которой все уравнения, начиная со второго не содержат переменнную x:

Для упрощения второй строки полученной системы умножим её на   и получим вновь матрицу системы уравнений, эквивалентной данной системе:

Теперь, сохраняя первое уравнение полученной системы без изменений, с помощью второго уравнения исключаем переменную y из всех последующих уравнений. Для этого к третьей строке матрицы системы прибавим вторую, умноженную на   (в нашем случае на  ).

Если бы в нашей системе уравнений было больше трёх, то следовало бы прибавлять и ко всем последующим уравнениям вторую строку, умноженную на отношение соответствующих коэффициентов, взятых со знаком минус.

В результате вновь получим матрицу системы, эквивалентной данной системе линейных уравнений:

Мы получили эквивалентную данной трапециевидную систему линейных уравнений:

Если число уравнений и переменных больше, чем в нашем примере, то процесс последовательного исключения переменных продолжается до тех пор, пока матрица системы не станет трапециевидной, как в нашем демо-примере.

Решение найдём "с конца" - это называется "обратный ход метода Гаусса". Для этого из последнего уравнения определим z: . Подставив это значение в предшествующее уравнение, найдём y:

Из первого уравнения найдём x:

Итак, решение данной системы -  .