- •3.Оптимизация контура регулирования эдс в системе двухзонного подчинённого регулирования скорости.
- •4.Особенности оптимизации контура регулирования скорости в системе двухзонного подчинённого регулирования скорости.
- •5.Применение метода модального управления при разработке суэп.
- •7. Синтез регуляторов методом логарифмических амплитудных характеристик
- •9.Адаптивное управление током якоря и скоростью двигателя в системе подчиненного управления при 2-х зонном управлении.
- •10.Микропроцессорное управление скоростью электропривода
- •11.Регулирование скорости асинхронного двигателя с фазным ротором путем импульсного регулирования добавочного сопротивления в цепи ротора.
- •12.Использование тиристорных преобразователей частоты с непосредственной связью для регулирования скорости асинхронного двигателя.
- •13.Структуры суэп с двухзвенным преобразователем частоты по схеме «выпрямитель –автономный инвертор напряжения». Реализация требуемой связи между частотой и напряжением.
- •14.Структуры суэп с двухзвенным преобразователем частоты по схеме «выпрямитель – автономный инвертор тока»
- •15. Системы частотно-токового управления
- •1 6. Принцип векторного управления. Ориентация системы
- •18. Синтез системы управления бесконтактным двигателем постоянного тока. Контроль положения ротора.Рис.1 Упрощенная принципиальная схема бесконтактного двигателя
- •21. Оценка статической точности и динамики системы управления. Определение результирующих погрешностей
- •22.Принцип построения замкнутой системы управления положением. Система управления скоростью как подсистемы управления положением
- •23.Система управления положением в режиме позиционирования. Требования к статической точности и динамике.
- •25.Особенности отработки средних и больших перемещений в позиционной системе
- •26.Применение задатчиков положения
- •27.Применение параболического регулятора положения и регулятора с переменной структурой
- •28.Система управления положением в режиме слежения. Задача следящего управления. Ошибки при управлении по заданию и возмущению.
- •29. Ошибка следящей системы при управлении по заданию и возмущению
- •30. Повышение точности отработки управляющего воздействия за счёт повышения порядка астатизма.
- •31.Комбинированное управление в следящей системе.
- •32.Гармоническое воздействие в следящей системе.
- •33.Настройка контура положения при упругой связи двигателя с исполнительным органом.
- •34.Влияние нелинейности объекта управления и пути уменьшения
- •3 5.Системы программного управления с шаговыми двигателями. Аппаратная и программная реализация.
- •37. Системы управления соотношением скоростей исполнительных механизмов
- •38.Системы управления натяжением
- •39.Системы управления Электро Приводами, взаимосвязанными по положению.
14.Структуры суэп с двухзвенным преобразователем частоты по схеме «выпрямитель – автономный инвертор тока»
Основными звеньями данных преобразователей частоты являются
• выпрямитель с фильтром;
• инвертор.
Напряжение питающей сети сначала выпрямляется выпрямителем, а затем инвертируется, т.е. преобразуется в переменное напряжение (или ток) требуемой частоты с помощью инвертора.
Автономный инвертор представляет собой коммутатор, для функционирования которого необходимы полностью управляемые переключающие элементы (ключи). Наиболее подходящими для автономных инверторов являются полностью управляемые полупроводниковые приборы (силовые транзисторы, запираемые тиристоры).
Структура входных цепей и режим переключений коммутатора могут быть организованы таким образом, что свойства АИ как электрического генератора оказываются подобными свойствам либо генератора напряжения, либо генератора тока. Инверторы первого типа получили название автономные инверторы напряжения (АИН); второго типа - автономные инверторы тока (АИТ). Инверторы тока формируют в цепи нагрузки ток, величина и форма которого не зависят от параметров нагрузки. Зависимыми от параметров нагрузки оказываются величина и форма выходного напряжения АИТ. Поэтому инверторы тока непосредственно совместимы только с нагрузкой активно-емкостного характера. В противном случае между инвертором и нагрузкой включаются буферные элементы емкостного характера.(14)
15. Системы частотно-токового управления
В
системах частотно-токового управления
двигатель питается от ТП частоты с
автономным инвертором тока (АИТ). В
таком случае УВ совместно с
контуром регулирования тока выпрямителя
образует источник тока. Управление
двигателем производится путем задания
тока статора и частоты АИТ. Обе
величины, в свою очередь, зависят от
общего сигнала задания на систему,
определяющего скорость двигателя.
Ток статора связан также с нагрузкой
двигателя. Эту связь проще всего выразить
через абсолютное скольжение в соответствии
с формулой:
Е
сли
при регулировании скорости задаваться
условием постоянства потока на уровне
требуемого значения, например Ф = Фн =
const, то по формуле (3-68)
можно рассчитать зависимость I1
= F (S2),
реализующую это условие. Зависимость
I1 = F
(S2) представляет
собой нелинейную функцию (рис. 3-19), и
для простоты выполнения функционального
преобразователя в системе управления
рационально выполнить ее линейную
аппроксимацию. Такая аппроксимация
показана в виде штриховой линии на рис.
3-19. Величина I1г
определяет граничный ток статора,
равный допустимому току ТП частоты
и двигателя. Характеристика I1
= F (S2)
симметрична относительно оси тока, что
подчеркивает общую симметрию асинхронной
машины в генераторном и двигательном
режимах. Используя реальную
характеристику I1
= F (S2)
функционального преобразователя, можно
из уравнений (3-63) и (3-64) рассчитать
реализуемые зависимости М = F
(S2) и Ф = F
(S2).
16.
1 6. Принцип векторного управления. Ориентация системы
17.Пример построения системы векторного управления в асинхронном электроприводе серии ЭПВ.В основу синтеза системы векторного управления [18] положена матема-тическая модель асинхронного двигателя в системе координат (d,q) , ори-ентированной по вектору потокосцепления ротора (11.1)…(11.5).Функциональная схема системы управления представлена на рис.11.10.Система управления реализована на микропроцессорном контроллере управления двигателем ADMC401 фирмы «АНАЛОГ ДИВАЙС». Информация о векторе потокосцепления ротора (его модуль ( r Ψ ), угло-вое положение относительно фазы А статора ( ψ ϕ ) и мгновенная частота вращения ( ψ ω )) вычисляется в модели роторной цепи по следующим урав- нениям, полученным из (11.3), (11.4):
Структурная схема модели роторной цепи изображена на рис.11.11.Преобразователь координат ABC →dq выполняет преобразование фазных токов статора АД из естественной трехфазной системы координат (А,В,С) в ортогональную синхронную систему координат (d,q) по уравнениям
Преобразователь напряжений реализует функции ограничения максимального значения заданного напряжения, обратного преобразования координат и компенсации запаздывания, вносимого системой управления. Алгоритм работы ограничителя напряжения организован таким образом, чтобы во всех режимах работы привода величина заданного выходного напряжения инвертора не превышала его максимального значения с учетом фактического значения входного напряжения инвертора ( d U ) и ограничений, связанных с неидеальностью силовых ключей. Что соответствует стандартному переходному процессу с перерегулированием 4,3 % и временем регулирования 3 корень из 2 Ткт
