- •1. Биохимия, ее задачи, значение биохимии для медицины.
- •2. Аминокислоты, строение, классификация по химической природе и свойствам боковой цепи. Уровни структурной организации белков. Характеристика связей, стабилизирующих белки. Понятие о доменных белках.
- •3. Физико-химические свойства белков как основа методов их исследования.
- •4. Принципы классификации белков. Характеристика простых белков.
- •5. Классификация сложных белков. Нуклеопротеины, структура, виды, биологическая роль. Строение мононуклеотидов, входящих в состав нуклеопротеинов.
- •7. Классификация сложных белков. Углевод-белковые комплексы, биологическая роль. Особенности строения гликопротеинов и протеогликанов.
- •8. Классификация сложных белков. Липид-белковые комплексы, биологическая роль. Особенности строения структурных протеолипидов и свободных липопротеинов.
- •9. Ферменты, их химическая природа, структурная организация, свойства. Сходство и отличия ферментов и небелковых катализаторов.
- •10. Коферменты, классификация, функции в ферментативных реакциях, примеры реакций.
- •11. Классификация и номенклатура ферментов. Характеристика ферментов первого и второго классов, примеры реакций.
- •12. Классификация и номенклатура ферментов. Характеристика ферментов третьего и четвертого классов, примеры реакций.
- •14. Современные представления о механизме действия ферментов. Стадии ферментативной реакции, молекулярные эффекты.
- •15. Ингибирование ферментов. Виды ингибирования, примеры. Лекарственные вещества как ингибиторы ферментов.
- •16. Характеристика основных видов регуляции активности ферментов в клетках живого организма.
- •17. Обмен веществ и энергии. Характеристика основных этапов обмена веществ. Общий и специфические пути катаболизма. Окислительное декарбоксилирование пирувата.
- •5 Коферментов
- •3 Фермента
- •18. Современные представления о биологическом окислении. Компоненты дыхательной цепи и их характеристика.
- •19. Пути синтеза атф в клетках, клеточная локализация процессов синтеза атф, примеры реакций. Молекулярные механизмы окислительного фосфорилирования (теория Митчелла).
- •20. Цитратный цикл, его биологическое значение, последовательность реакций. Сопряжение реакций цикла трикарбоновых кислот с дыхательной цепью ферментов.
- •21. Роль белков в питании. Превращение белков в органах пищеварительной системы. Роль соляной кислоты в переваривании белков. Характеристика протеолитических ферментов пищеварительного тракта.
- •23. Трансаминирование и декарбоксилирование аминокислот. Химизм процессов, биологическая роль.
- •24. Дезаминирование аминокислот. Окислительное дезаминирование. Непрямое дезаминирование, биологическая роль.
- •25. Синтез мочевины, химизм реакций, биологическая роль.
- •26. Реакции образования мочевой кислоты и креатинина, химизм реакций, биологическая роль процессов.
- •27. Современные представления о структуре и функциях нуклеиновых кислот. Строение мономеров нуклеиновых кислот. Генетический код и его свойства.
- •28. Репликация днк, условия, этапы, их характеристика.
- •29. Транскрипция, условия и этапы транскрипции, их характеристика.
- •31. Регуляция биосинтеза белка у эукариотов.
- •32. Механизмы регуляции биосинтеза белка у прокариотов.
- •33. Основные углеводы организма человека, классификация, биологическая роль. Переваривание и всасывание углеводов в органах пищеварительной системы.
- •34. Катаболизм глюкозы в анаэробных условиях. Гликолитическая оксидоредукция, ее субстраты. Биологическая роль этого процесса.
- •35. Катаболизм глюкозы в тканях в аэробных условиях. Гексозодифосфатный путь превращения глюкозы и его биологическая роль.
- •37. Биосинтез и распад гликогена в тканях. Биологическая роль этих процессов.
- •38. Глюконеогенез. Возможные предшественники, последовательность реакций, биологическая роль. Химизм образования глюкозы из лактата.
- •41. Ресинтез простых и сложных липидов в клетках слизистой оболочки тонкого отдела кишечника.
- •42. Липопротеины крови человека, их образование и функции.
- •43. Окисление высших жирных кислот в тканях, биологическая роль процесса.
- •44. Окисление глицерина в тканях, биологическая роль процесса.
- •45. Биосинтез высших жирных кислот в тканях, химизм реакций, биологическая роль. Характеристика синтазы жирных кислот.
- •46. Холестерин, строение, биологическая роль, биосинтез и распад холестерина в организме человека.
8. Классификация сложных белков. Липид-белковые комплексы, биологическая роль. Особенности строения структурных протеолипидов и свободных липопротеинов.
Это комплексы белков с липидными компонентами, их условно подразделяют на две группы:
1.) Свободные липопротеины. Липопротеины плазмы крови, молока, растворимы в воде.
2.) Структурные протеолипиды. Входят в состав биомембран, растворимы в жирах.
Липид – белковые комплексы в качестве небелковой части содержат липидные компоненты.
Триацилглицеролы (ТГ) (только в последнем Фосфолипиды (ФЛ) – фосфатидилэтаноламин (ФЭА) нижнем радикале не 35, а 33) (только во втором радикале не 31, а 33)
Высшие жирные кислоты:
предельные
С17Н35СООН – стеариновая
С15Н31СООН – пальмитиновая
С17Н33СООН – олеиновая
непредельные
С17Н31СООН – линолевая
С17Н29СООН – линоленовая
С19Н29СООН – арахидоновая
Холестерол (ХЛ)
1.) Свободные липопротеины. Содержатся в плазме крови, все они имеют разную плотность (от 0,92 до 1,21 кг/л) благодаря липидному компоненту. В крови человека присутствуют несколько фракций ЛП, отличающихся по плотности, что связано с различным соотношением липидного и белкового компонента в молекуле.
Фракции ЛП:
А) Хиломикроны (ХМ). Это самая низкая по плотности фракция, т.к. в составе их преобладают липидные комплексы и на долю белка приходится до 2 %. Плотность 0,95 кг/л. Хиломикроны появляются в сыворотке крови после приема жирной пищи;
Б) Липопротеины очень низкой плотности (ЛПОНП) или пре-β-липопротеины, их плотность 0,94 – 1,006 кг/л;
В) Липопротеины низкой плотности (ЛПНП) или β-липопротеины. Плотность их 1,006 – 1,063 кг/л;
Г) Липопротеины высокой плотности (ЛПВП) или α-липопротеины. Плотность их 1,063 – 1,210 кг/л. В составе их преобладает белковый компонент.
Роль свободных (плазменных) липопротеинов.
Свободные ЛП играют транспортную роль, поэтому их называют - транспортными формами липидов. Благодаря своей растворимости в водной среде они могут переносить липиды, поступающие в кровь при всасывании из кишечника, а также распределять липиды между тканями, одни из которых их синтезируют, а другие используют.
ЛП переносят триацилглицеролы, фосфолипиды, стероиды, а также небольшое количество жирорастворимых витаминов, β-каротина.
В настоящее время доказана роль фракций липопротеинов в патогенезе атеросклероза – они называются атерогенными ЛП. К ним относятся ЛПНП и ЛПОНП, а фракцию ЛПВП называют антиатерогенной, так как её увеличение препятствует развитию атеросклероза.
2.) Структурные липопротеины (протеолипиды). Они входят в состав биологических мембран и растворяются в неполярных растворителях (хлороформ, метанол). Причина такого поведения протеолипидов в том, что белок составляет сердцевину их молекулы, а оболочку образует липидный компонент. Содержание белка в протеолипидах 65 – 85 %. Они обнаружены в сердце, почках, легких, скелетных мышцах. В клетках перечисленных органов они представляют основу биологических мембран, образуя двойной липидный слой, в формировании которого участвуют фосфо- и гликолипиды. Состав протеолипидов в различных органах неодинаков.
