- •1. Биохимия, ее задачи, значение биохимии для медицины.
- •2. Аминокислоты, строение, классификация по химической природе и свойствам боковой цепи. Уровни структурной организации белков. Характеристика связей, стабилизирующих белки. Понятие о доменных белках.
- •3. Физико-химические свойства белков как основа методов их исследования.
- •4. Принципы классификации белков. Характеристика простых белков.
- •5. Классификация сложных белков. Нуклеопротеины, структура, виды, биологическая роль. Строение мононуклеотидов, входящих в состав нуклеопротеинов.
- •7. Классификация сложных белков. Углевод-белковые комплексы, биологическая роль. Особенности строения гликопротеинов и протеогликанов.
- •8. Классификация сложных белков. Липид-белковые комплексы, биологическая роль. Особенности строения структурных протеолипидов и свободных липопротеинов.
- •9. Ферменты, их химическая природа, структурная организация, свойства. Сходство и отличия ферментов и небелковых катализаторов.
- •10. Коферменты, классификация, функции в ферментативных реакциях, примеры реакций.
- •11. Классификация и номенклатура ферментов. Характеристика ферментов первого и второго классов, примеры реакций.
- •12. Классификация и номенклатура ферментов. Характеристика ферментов третьего и четвертого классов, примеры реакций.
- •14. Современные представления о механизме действия ферментов. Стадии ферментативной реакции, молекулярные эффекты.
- •15. Ингибирование ферментов. Виды ингибирования, примеры. Лекарственные вещества как ингибиторы ферментов.
- •16. Характеристика основных видов регуляции активности ферментов в клетках живого организма.
- •17. Обмен веществ и энергии. Характеристика основных этапов обмена веществ. Общий и специфические пути катаболизма. Окислительное декарбоксилирование пирувата.
- •5 Коферментов
- •3 Фермента
- •18. Современные представления о биологическом окислении. Компоненты дыхательной цепи и их характеристика.
- •19. Пути синтеза атф в клетках, клеточная локализация процессов синтеза атф, примеры реакций. Молекулярные механизмы окислительного фосфорилирования (теория Митчелла).
- •20. Цитратный цикл, его биологическое значение, последовательность реакций. Сопряжение реакций цикла трикарбоновых кислот с дыхательной цепью ферментов.
- •21. Роль белков в питании. Превращение белков в органах пищеварительной системы. Роль соляной кислоты в переваривании белков. Характеристика протеолитических ферментов пищеварительного тракта.
- •23. Трансаминирование и декарбоксилирование аминокислот. Химизм процессов, биологическая роль.
- •24. Дезаминирование аминокислот. Окислительное дезаминирование. Непрямое дезаминирование, биологическая роль.
- •25. Синтез мочевины, химизм реакций, биологическая роль.
- •26. Реакции образования мочевой кислоты и креатинина, химизм реакций, биологическая роль процессов.
- •27. Современные представления о структуре и функциях нуклеиновых кислот. Строение мономеров нуклеиновых кислот. Генетический код и его свойства.
- •28. Репликация днк, условия, этапы, их характеристика.
- •29. Транскрипция, условия и этапы транскрипции, их характеристика.
- •31. Регуляция биосинтеза белка у эукариотов.
- •32. Механизмы регуляции биосинтеза белка у прокариотов.
- •33. Основные углеводы организма человека, классификация, биологическая роль. Переваривание и всасывание углеводов в органах пищеварительной системы.
- •34. Катаболизм глюкозы в анаэробных условиях. Гликолитическая оксидоредукция, ее субстраты. Биологическая роль этого процесса.
- •35. Катаболизм глюкозы в тканях в аэробных условиях. Гексозодифосфатный путь превращения глюкозы и его биологическая роль.
- •37. Биосинтез и распад гликогена в тканях. Биологическая роль этих процессов.
- •38. Глюконеогенез. Возможные предшественники, последовательность реакций, биологическая роль. Химизм образования глюкозы из лактата.
- •41. Ресинтез простых и сложных липидов в клетках слизистой оболочки тонкого отдела кишечника.
- •42. Липопротеины крови человека, их образование и функции.
- •43. Окисление высших жирных кислот в тканях, биологическая роль процесса.
- •44. Окисление глицерина в тканях, биологическая роль процесса.
- •45. Биосинтез высших жирных кислот в тканях, химизм реакций, биологическая роль. Характеристика синтазы жирных кислот.
- •46. Холестерин, строение, биологическая роль, биосинтез и распад холестерина в организме человека.
14. Современные представления о механизме действия ферментов. Стадии ферментативной реакции, молекулярные эффекты.
С термодинамической точки зрения, действие любого фермента направлено на понижение энергии активации. Энергия активации - это то дополнительное количество энергии, которое нужно сообщить молекуле, чтобы перевести её из неактивного состояния в состояние активности. Чем ниже энергия активации, тем выше скорость реакции. Теория действия ферментов была предложена Бейлисом и Ванбургом. Эта теория получила название адсорбционной. Согласно ей, фермент представляет собой "губку", которая адсорбирует на своей поверхности молекулы реагирующих веществ. Она как бы стабилизирует их, способствует взаимодействию. Эта гипотеза не могла объяснить специфичность действия ферментов. 70 лет назад была предложена другая теория Михаэлисом и Ментеном. Они выдвинули понятие о F-S комплексе. Фермент взаимодействует с субстратом, образуя нестойкий промежуточный F-S комплекс, который затем распадается с образованием продуктов реакции (Р) и освобождением фермента. В этом процессе выделяют несколько стадий:
I - этап сближения и ориентации субстрата относительно активного центра фермента; II - образование фермент-субстратного комплекса (ES) в результате индуцированного соответствия; III - деформация субстрата и образование нестабильного комплекса фермент-продукт (ЕР); IV- распад комплекса (ЕР) с высвобождением продуктов реакции из активного центра фермента и освобождением фермента.
Молекулярные эффекты 1 этапа: • эффект концентрирования (увеличение концентрации субстрата в области активного центра фермента); • эффект ориентации; • эффект индуцированного соответствия (субстрат индуцирует изменения в активном центре фермента, которые ведут к более полному их соответствию).
Молекулярные эффекты 2 этапа: • эффект натяжения связей субстрата (увеличение межатомных расстояний); • эффект кислотно-основного катализа (одни и те же группы активного центра фермента выступают в качестве катализаторов кислотного и основного типов); • эффект ковалентного катализа (образование ковалентных связей между ферментом и субстратом).
Эффект индуцированного соответствия объясняет специфичность действия ферментов. По этому поводу имеется 2 точки зрения: гипотеза Фишера. Согласно ей имеется строгое стерическое соответствие субстрата и активного центра фермента. По Фишеру, фермент - это жёсткая структура, а субстрат является как бы слепком его активного центра. Если субстрат подходит к активному центру фермента как ключ к замку, то реакция возможна. Но эта теория не могла объяснить групповую специфичность фермента. Теория индуцированного соответствия Кошленда дополнила теорию Фишера. Согласно ей молекула фермента - это не жёсткая, а гибкая структура. После связывания фермента с субстратом, изменяется конформация активного центра фермента и всей молекулы субстрата. Они находятся в состоянии индуцированного соответствия. Это происходит в момент взаимодействия. Гипотеза Кошленда получила название "рука-перчатка".
