- •Министерство образования и науки рф
- •Введение
- •1 Общие материалы по курсу органической химии
- •1.1 Начальные сведения об органических веществах
- •1.3. Классификация органических соединений по природе углеродного скелета
- •1.4 Классификация органических соединений по природе функциональных групп
- •1.5 Качественный элементный анализ органических соединений
- •1.6 Названия органических радикалов
- •Классы органических соединений и названия функциональных групп по правилам номенклатуры iupac
- •1.8 Типы изомерии
- •1.9 Стереоизомеры
- •1.10 Правила r, s-системы обозначения конфигурации оптически активных соединений
- •1.11 Возрастание старшинства заместителей при хиральном центре
- •1.12 Принципы рациональной номенклатуры
- •1.13 Основные правила номенклатуры iupac для алифатических соединений
- •2 Алканы и циклоалканы
- •2.1 Физические свойства алканов и циклоалканов
- •2.2 Число изомеров в ряду алканов
- •2.3 Хлорирование алканов
- •2.4 Перегонка и крекинг нефти и нефтепродуктов
- •2.5 Химические реакции метана
- •2.6 Конформации этана
- •Конформации бутана
- •3.2 Номенклатура геометрических изомеров
- •3.3 Электрофильное присоединение по двойной связи
- •3.4 Радикальное гидробромирование алкенов (эффект Хараша)
- •3.5 Аллильное бромирование n-бромсукцинимидом (бромирование по Волю-Циглеру)
- •Химические реакции непредельных углеводородов
- •3.7 Окисление алкенов без разрыва по двойной связи
- •3.7.2 Окисление кислородом (Ag; 350 0c) или надкислотами
- •3.8 Окисление алкенов с разрывом молекулы по двойной связи
- •3.9 Промышленное использование этилена
- •3.10 Промышленное использование пропилена
- •3.15 Вулканизация
- •3. 16 Теломеризация этилена
- •3.17 Получение бутадиена по методу лебедева
- •4. Алкины
- •4.1 Физические свойства алкинов
- •4.2 Методы синтеза алкинов
- •4.3 Ацетилен нс≡сн, этин
- •5 Ароматические углеводороды
- •5.1 Физические свойства аренов
- •5.2 Строение молекулы бензола
- •5.4 Озонолиз бензола и его производных Озонолиз бензола (I), толуола (II), о-ксилола (III):
- •2. Реакция электрофильного замещения (se):
- •5.7 Области применения реакций электрофильного замещения для производных бензола
- •5.8 Правило ориентации в реакциях электрофильного замещения в ряду производных бензола
- •6.2 Механизмы реакций нуклеофильного замещения
- •Транс-изомер цис-изомер транс-изомер
- •7 Спирты и фенолы
- •7.1 Физические свойства спиртов и фенолов
- •7.4 Способы получения и химические свойства спиртов
- •7.5 Магнийорганический синтез спиртов
- •7.6 Дегидратация спиртов
- •Химические реакции фенола
- •7.10 Физические свойства простых эфиров
- •7.11 Химические свойства окиси этилена
- •8 Альдегиды и кетоны
- •8.1 Физические свойства альдегидов
- •8.2 Физические свойства кетонов
- •8.7 Альдольная и кротоновая конденсации
- •Образование феноло-формальдегидных смол
- •1 Стадия:
- •2. Стадия:
- •9.1 Физические свойства
- •9.2 Способы получения карбоновых кислот
- •Оксосинтез:
- •9.3 Строение карбоновых кислот и типы химических реакций
- •9.4 Функциональные производные карбоновых кислот
- •9.5 Физические свойства производных карбоновых
- •9.8 Превращения дикарбоновых кислот при нагревании
- •9.9 Синтезы на основе малонового эфира
- •1 Монозамещенных уксусных кислот:
- •2 Янтарной кислоты — обработкой натриймалонового эфира йодом:
- •4. Производных барбитуровой кислоты из малоновых кислот и мочевины:
- •10.1 Физические свойства аминов
- •10.4 Реакции восстановления нитробензола
- •10.5 Химические свойства анилина
- •Химические свойства
- •10.6 Реакции аминов с азотистой кислотой
- •10.7 Синтезы на основе свойств солей диазония
- •12.1 Важнейшие гидроксикислоты
- •12.2 Химические свойства гидроксикислот
- •Взаимодействие молочной кислоты с перечисленными выше реагентами:
- •12.3 Превращения гидроксикислот при нагревании
- •12.4 Стереоизомеры винной кислоты
- •12.5 Сложноэфирная конденсация по кляйзену
- •Важнейшие оксокислоты
- •12.7 Химические реакции ацетоуксусного эфира
- •Влияние растворителя на содержание енольной формы ацетоуксусного эфира
- •2.8 Синтезы на основе ацетоуксусного эфира
- •12.9 Мочевина (карбамид)
- •13 Углеводы
- •13.1 Генетический ряд природных d-альдоз
- •13.2 Синтез фишера – киллиани
- •13.8 Химические реакции моносахаридов
- •13.9 Эпимеризация моноз. Получение озазонов
- •13.10 Реакции лактозы (молочный сахар)
- •14 Гетероциклические соединения
- •14.1 Номенклатура гетероциклических систем
- •14.2 Физические свойства гетероциклических соединений
- •14.3 Ароматичность фурана, пиррола, тиофена
- •14.8 Реакции пиридина
- •14.10 Синтез хинолина по скраупу
- •15.2 Химические реакции аминокислот
- •15.3 Превращения аминокислот при нагревании
- •15.4 Качественные реакции для идентификации важнейших α-аминокислот
- •15.5 Нингидриновая реакция
- •15.6 Реакция адамкевича
- •15.7 Защитные агенты амино- (а) и карбоксильных (б) групп в ходе пептидного синтеза
- •15.8 Пептидный синтез
- •15.9 Твердофазный синтез пептидов
- •15.10 Метод сенгера
- •15.11 Дансильный метод (метод Хартли и Грея)
- •15.12 Метод эдмана
- •16.2 Простагландины
- •16.3 Стероиды
- •16.4 Важнейшие гомополисахариды
- •16.5 Важнейшие гетерополисахариды
- •16.6 Каррагинаны
- •16.7 Антибиотики
- •Гетероциклические основания, входящие в состав рнк и днк
- •17. 5 Реакции, приводящие к укорачиванию углеродной цепи:
- •Окисление алкилбензолов до ароматических кислот
- •17.6 Качественный функциональный анализ органических соединений
- •17.7 Путеводитель по именным реакциям
- •17.8 Спектрометрические методы идентификации структуры органических соединений
- •В области 200-800 нм
- •Инфракрасное поглощение органических функциональных групп
- •Основные частоты колебаний в ик-спектрах
- •Инфракрасное поглощение органических функциональных групп
- •17.8.3 Химические сдвиги групп в спектрах пмр
- •Положение сигналов протонов различных классов органических соединений в спектрах пмр
- •Спектроскопия ямр – 13с
- •Химический сдвиг 13с в спектрах ямр-13с ( δ, м.Д.)
- •17.8.4 Характеристические особенности масс-спектров органических соединений
- •Библиографический список Основная
- •Дополнительная
- •Оглавление
10.4 Реакции восстановления нитробензола
Восстановление нитробензола до анилина в кислой среде протекает через стадии образования нитрозобензола и фенилгидроксиламина. В щелочной среде эти соединения конденсируются с образованием азоксибензола, а затем и продуктов более глубокого восстановления - азобензола и гидразобензола.
При полном восстановлении нитробензола в кислой среде образуется анилин. Впервые анилин синтезирован Н. Н. Зининым при восстановлении сероводородом:
C6H5NO2 + 3 H2S —¾® C6H5NH2 + 2 Н2О + 3 S
Сегодня анилин получают из нитробензола с использованием в качестве восстановителей железа, цинка или олова в НС1, гидросульфида аммония и водорода или гидразина на никелевом катализаторе:
C6H5NO2 + 3 Zn + 6НС1 ¾¾® C6H5NH2 + 3 ZnCl2 + 2H2O
При восстановлении нитробензола в мягких условиях [цинковая пыль в водном растворе или пентакарбонил железа Fe(CO)5] процесс останавливается на стадии образования нитрозобензола. Восстановление нитробензола в слабокислой среде с использованием цинка в растворе хлорида аммония выделяется N-фенилгидроксиламин:
C6H5NO2 + 2 Zn + 4 NH4C1 ¾¾® C6H5NHOH + 2 [Zn(NH3)2]Cl2 + H2O
Восстановление нитробензола в щелочной среде приводит к образованию азоксибензола, азобензола и гидразобензола. Так, при восстановлении нитробензола метилатом натрия выделяется азоксибензол:
Действием алюмогидридом или станнитом натрия на нитробензол получают азобензол:
2C6H5NО2 + 4Na2SnO2 ¾¾® C6H5-N= N-C6H5 + Na2SnO3 + 8NaOH
Более глубокое восстановление до гидразобензола наблюдается при использовании цинковой пыли в щелочной среде:
2C6H5NO2 + 5Zn + 5NaOH + Н2О ¾® C6H5-NH-NH-C6H5 + 5NaHZnО2
10.5 Химические свойства анилина
Анилин получают восстановлением нитробензола, как основание он проявляет более слабые свойства, чем аммиак.
Химические свойства
10.6 Реакции аминов с азотистой кислотой
Тип аминов
|
Реакции аминов с азотистой кислотой |
Первичные алифатические амины
|
выделяют азот с образованием спиртов или алкенов (с третичными углеводородными радикалами):
|
Вторичные амины
|
образуют N-нитрозоамины:
|
Третичные амины |
алифатического ряда не взаимодействуют с НNO2, третичные жирно-ароматические амины (диалкил-фениламины) нитрозируются в пара-положение бензольного кольца:
|
Первичные ароматические амины |
образуют соли диазония:
|
10.7 Синтезы на основе свойств солей диазония
● Пониженная реакционная способность арилгалогенидов в реакциях нуклеофильного замещения атома галогена ограничивает их применение для синтеза производных ароматического ряда.
● Для синтеза используют соли диазония, получаемые при обработке первичных ароматических аминов смесью нитрита щелочного металла с минеральной кислотой.
● Особая ценность диазониевой группы заключается не только в разнообразии реакций замещения, но и возможности элиминироваться, замещаться на водород.
● Последняя реакция обычно завершает цепь превращений, в которых используется ориентирующее действие нитро- или аминогруппы, превращаемой затем в диазониевую.
● Для получения азокрасителей используют реакции солей диазония с ароматическими фенолами и аминами.
11 ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ СЕРЫ
11.1 СИНТЕЗ И РЕАКЦИИ МЕРКАПТАНОВ (ТИОСПИРТЫ)
И СУЛЬФИДОВ (ТИОЭФИРЫ)
11.2 СПОСОБЫ ПОЛУЧЕНИЯ И ХИМИЧЕСКИЕ СВОЙСТВА АРОМАТИЧЕСКИХ СУЛЬФОКИСЛОТ
12 ГИДРОКСИ- И ОКСОКИСЛОТЫ
