- •Глава 1. Методологические основы технологии бассейнового моделирования
- •Глава 2 Формирование нефтегазоматеринского потенциала.
- •Глава 3 Катагенез органического вещества и реализация нефтегазоматеринского потенциала.
- •Глава 4. Количественная оценка масштабов генерации и эмиграции углеводородов
- •Глава 5 Моделирование процесса уплотнения осадочных толщ
- •Глава 6. Реконструкция условий эмиграции, сохранения и перераспределения продуктов генерации. Выделение нефтегазосборных площадей (нгсп).
- •Глава 5 Прогноз плотностных и емкостных характеристик осадочных пород
- •Глава 6 Учет эволюции емкостного фонда ловушек нефти и газа
- •Глава 7 Оценка потерь продуктов генерации в процессе вторичной миграции и в зонах аккумуляции
- •Глава 8 Прогноз качественно-фазовых характеристик пластовых смесей
- •Глава 9 Практическое применение методики бассейнового моделирования при оценке перспектив нефтегазоносности Региональный прогноз
- •Зональный прогноз Прогноз фазового состояния флюидов залежей Карачаганакско-Джамбейтинской нгсп.
- •Локальный прогноз
- •Рекомендуемая литература
Глава 3 Катагенез органического вещества и реализация нефтегазоматеринского потенциала.
Катагенез является ведущим процессом в преобразовании РОВ, генерации нефти и газа и в изменении свойств самих нефтегазоносных отложений, что в совокупности во многом определяет закономерности распределения нефти и газа в земной коре.
Катагенез — направленный по действию комплекс постдиагенетических процессов, протекающих в осадочных породах вплоть до их превращения в метаморфические. Катагенетические изменения пород и соответственно заключенного в них ОВ обусловлены действием ряда взаимосвязанных факторов, главными из которых являются температура и давление. В то же время катагенетические изменения пород зависят от длительности воздействия этих факторов, конкретные же значения температуры и давления, их изменения во многом определяются особенностями геологического развития региона.
Главный источник тепла в недрах — эндогенное тепло Земли, проявление которого в целом отражается в геотемпературных полях и геотермических градиентах. Характер распределения температур в недрах — геотемпературные поля — зависит как от величины теплового потока, так и от теплофизических свойств различных типов пород, тектонического развития, подвижности и мощности земной коры, динамики подземных вод, геохимической обстановки, магматической активности, наличия вечной мерзлоты и др.
Значения тепловых потоков, как и геотермических градиентов, не постоянны, а меняются во времени и пространстве. Современные представления о распределении температуры в осадочной толще основаны на признании ведущей роли глубинного теплового потока, усиления его за счет радиоактивных процессов, некоторых экзотермических реакций, сопровождающих преобразование ОВ и минеральной части пород осадочной оболочки, и перераспределения в ней тепла.
Давление обычно действует в непрерывной связи с температурным фактором. Большинство исследователей считают, что давление в пределах температур, обычных для осадочного чехла, не оказывает существенного влияния на процессы преобразования ОВ, а значительно больше влияет на минеральную часть пород, и прежде всего на физические свойства пород (плотность, пористость и др.).
Принципиально важным явилось выделение в процессе превращения органического вещества нефтегазоматеринских пород "Главной фазы нефтеобразования" − ГФН. Место проявления ГФН в разрезе осадочного бассейна получило название главной зоны нефтеобразования − ГЗН, или зоны генерации жидких углеводородов. Конкретное выражение получило также понятие об очаге генерации углеводородов − наиболее погруженной части бассейна, характеризующейся активной генерацией углеводородов.
Многочисленные геохимические исследования нефтегазоматеринских (НГМ) осадочных пород по отечественным и зарубежным бассейнам позволили определить геолого-геохимические условия и границы проявления ГФН и ГЗН и выработать на их основе диагностические параметры. Установлено влияние на развитие ГФН литологического состава нефтегазоматеринских пород, типа исходного органического вещества, термобарических характеристик бассейна.
Понятия о ГФН и ГЗН широко признаны во всем мире и непременно используются при оценке перспектив нефтегазоносности осадочных бассейнов. В американской литературе условия ГФН получили название "нефтяного окна". Ниже глубинной зоны ГФН в условиях позднего литогенеза пород выделена зона генерации углеводородных газов. Она нашла подтверждение в последующих исследованиях и названа С.Г. Неручевым "Главной фазой или зоной газообразования" (ГФГ, ГЗГ).
Первые критерии интенсивности катагенеза (метаморфизма) были разработаны для углей, так как он оказывает значительное влияние на свойства углей, определяющих их промышленные сорта (марки). Еще в конце XIX в. были разработаны шкалы углефикации (карбонизации), основанные на последовательных рядах этих марок. Позднее для определения степени «метаморфизма» углистых включений стали использовать оптические свойства мацералов, прежде всего отражательную способность (ОС) витринита в воздухе (Ra) и/или в масле (R0).
В нефтяной геологии с 20-х годов XX в. стали использоваться шкалы углефикации Д. Уайта, установившего зависимость распределения нефти и углеводородных газов от величины «углеродного коэффициента». Начиная с 60-х годов в практику нефтегеологических исследований прочно вошли показатели углефикации углей и РОВ — R° и Ra.
Соответствие этапов углефикации и образования углей разных марок определенным температурам было установлено на основании экспериментов, при этом минимальные температуры образования углей в лабораторных условиях условно принимаются в качестве верхних пределов температур для природных процессов (°С): Б-Д - 150-200, Д-Г - 250, Ж-К - 290, К-ПС - 340, ПС-Т — 380. Разработанная для всех возрастов шкала приближенных соотношений палеотемператур приведена в табл. 1.
Многочисленными исследованиями на примере разных регионов (Н.Б. Вассоевич, Ю.И. Корчагина, О.А. Радченко, К.Ф. Родионова, С.Г. Неручев, Б. Тиссо, Д. Вельте и др.) было установлено, что характер преобразования РОВ в принципе такой же, как и концентрированного ОВ, — обуглероживание основной массы с выходом жидких и газообразных новообразований — УВ, СО2, Н2О и др., сопровождающееся коренной перестройкой керогена, четко фиксированной по изменению физико-химических и оптических свойств его нерастворимой части.
Таблица 1.
Соотношение палеотемператур и ОС витринита (по И.И. Амосову)
Марка угля |
ОС витринита, 10Ra |
Палеотемпература, °С |
Б |
71 |
95 |
Д |
72-77 |
100-130 |
Г |
78-84 |
135-165 |
Ж |
85-95 |
170-205 |
К-ОС |
96-110 |
210-230 |
Т |
до 115 |
230-250 |
ПА-А |
более 115 |
более 250 |
Для обозначения уровня преобразования РОВ использование «углемарочной» шкалы некорректно. Н.Б. Вассоевичем была составлена шкала катагенеза, в которой она сопоставляется с углемарочными и шкалами других стран. Для наименования ранней, средней и поздней подстадий катагенеза рекомендуется использовать древнегреческие префиксы «прото», «мезо» и «апо». При подразделении прото-, мезо- и апокатагенеза на градации достаточно ограничиться аббревиатурами с соответствующими индексами: для протокатагенеза — ПК1 ПК2, ПК3; для мезокатагенеза — MK1, МК2, МК3, МК4, МК5; для апокатагенза — AK1, АК2, АК3, АК5 Число градаций в каждой подстадии определялось средним числом классов гумусовых углей, выделяемых по степени их «метаморфизма».
Наиболее важный этап в нефтеобразовании связан с началом мезокатагенеза и отвечает главной фазе нефтеобразования (ГФН). Как отмечалось ранее, на этом этапе ОВ нефтегазоматеринских пород сапропелевого или смешанного типа за счет термолиза и термокатализа липидной его части начинает генерировать значительное количество гомологов метана и высокомолекулярных жидких УВ. Одновременно с увеличением масштабов образования УВ за счет вторичной стадии дегидратации глинистых минералов (по Берсту) и отжатием межслоевой воды начинается эмиграция УВ. Зарождающаяся микронефть дает начало нормальной нефти путем миграции и образования скоплений в ловушках.
Этот этап связан с градациями катагенеза ПК3−МК3 (стадии углефикации ОВ Б−Ж), точнее – стадии МК1−МК3 (стадии углефикации Д−Ж). Начиная с градации катагенеза МК3, снижается образование жидких УВ и истощенное ОВ продуцирует в основном метан с изотопически тяжелым углеродом. Другая фациальная ветвь ОВ – гумусовая, состоящая из высококонденсированных ароматических группировок высшей растительности, на всех этапах катагенеза продуцирует метан и в меньшей мере хлороформенный битумоид с низким содержанием углеводородов.
Положение зон (стадий) катагенеза является прямой функцией от голубины залегания и в каждом нефтегазоносном - НГБ бассейне (его части) зависит от конкретных геологических условий: величины теплового потока, теплопроводности и теплоемкости разреза, глубины залегания фундамента и т.д.
