Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
НМД в АФК Козырь А.А. 361С.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
36.35 Кб
Скачать

1.2 Неметрические аспекты математизации

 

Численные (метрические) аспекты математизации как теоретического, так и эмпирического знания являются наиболее знакомыми способами использования математических методов. Не случайно вплоть до конца прошлого века математику нередко определяли как науку об измерении величин. Однако такое определение не охватывает содержания не только современной математики, но и математики прошлого века. В математике давно возник целый ряд новых разделов и дисциплин, в которых вопросы измерения величин не играют существенной роли (проективная геометрия, теория групп, топология, теория множеств и другие). В первое время казалось, что эти новые абстрактные теории имеют лишь внутриматематическую ценность. Со временем выяснилось, что они дают возможность адекватнее выражать закономерности реальных процессов в физике, химии, биологии, экономике и технике. В качестве примера сошлемся на теорию групп, которая первоначально возникла в алгебре в связи с проблемой решения уравнений высших степеней (XVIII в.). Только в конце XIX в. методы этой теории начинают привлекать внимание естествоиспытателей. В 1895г. Е.С. Федоров использовал их для исследования структуры кристаллов, обнаружив в них 230 пространственных групп. Здесь теория групп была применена только для классификации и описания. Более существенную роль ее понятия и методы, в частности теория представлений групп, играют в современной физике – теории относительности и квантовой механике. Другим примером может служить математическая логика. В 30-е годы она рассматривалась как сугубо абстрактная наука, единственной задачей которой служил анализ математических доказательств и рассуждений. После разработки теории алгоритмов и рекурсивных функций математическая логика нашла многочисленные теоретические и практические применения при анализе и синтезе вычислительных машин и кибернетических устройств. Эти примеры, число которых можно было бы увеличить, свидетельствуют о том, что возрастание абстрактности математики не означает отрыва ее от действительности. [8]

Наоборот, с помощью более абстрактных теорий удается полнее и глубже отобразить существенные связи и отношения реального мира. Применение таких теорий в развитых науках современного естествознания: теории относительности, квантовой механике, теории «элементарных» частиц, космологии, квантовой химии, молекулярной биологии и других – диктуется самим уровнем развития этих наук. В современной физике вместо наглядных моделей используются математические модели, которые в абстрактной форме глубже выражают закономерности, существующие в микромире. Назначение таких моделей состоит не в том, чтобы зрительно, наглядно представить процессы: с помощью математических уравнений и формул выражаются зависимости между величинами исследуемого процесса. В этом отношении наиболее характерно изменение роли математики в современной физике.

Если в классической физике модель процесса обычно строилась чисто качественными методами и только после этого к ней применялась математика, то в современной физике чаще всего прибегают к построению математической модели. Одним из важных методов построения новой теории в современной физике выступает метод математической гипотезы, о которой рассказывалось в главе четвертой. Для отображения объектов с трудно представимыми свойствами микрочастиц современная физика все больше и больше прибегает к понятиям и методам новейшей математики. История создания квантовой механики и общей теории относительности свидетельствует о большой эвристической ценности математики в современном естествознании. [7]