- •Вопросы к экзамену по курсу «Методы обработки и анализа информации в сфере молодежной политики»
- •1. Статистические закономерности в анализе социологической информации.
- •2. Моделирование социальной реальности.
- •3. Специфика математико-статистических методов применительно к социологической информации.
- •4. Задачи математики применительно к социологической информации.
- •5. Сложности использования математических методов в социологии.
- •1. Проблема соотношения выборки и генеральной совокупности
- •2. Отсутствие строгих обоснований возможности применения конкретных методов математической статистики. Эвристичность (непредсказуемость)многих алгоритмов анализа данных
- •6. Программно-аналитический комплекс «spss»: общая характеристика.
- •2. Краткая история возникновения и развития spss.
- •3. Модули программы spss
- •7. Подготовка и создание базы данных в spss: подготовка социологических данных к обработке (в т.Ч. Дихотомический и категориальный способы кодировки).
- •8. Корректировка базы данных.
- •9. Методы анализа одномерных распределений: описание и графическое представление социологических данных, построение таблиц частотного распределения для многозначных вопросов.
- •10. Модификация массива социологических данных: перекодирование с созданием новых переменных, перекодирование в старых переменных, условный отбор данных.
- •11. Меры центральной (средней) тенденции.
- •12. Шкалирование и виды шкал.
- •13. Меры разброса.
- •14. Показатели распределения признака.
- •15. Стандартизация показателей.
- •16. Таблицы сопряженности.
- •17. Коэффициенты критерия «хи-квадрат» и его вычисление в spss.
- •18. Меры связанности для переменных номинальной шкалы: симметричные и направленные меры.
- •3.1. Симметричные меры
- •3.2. Направленные меры
- •19. Меры связанности для переменных порядковой (ранговой) шкалы.
- •20. Выборка: виды, алгоритмы формирования выборки. Объем и ошибка выборки.
- •Ошибки выборки
- •Необходимый объем выборки
19. Меры связанности для переменных порядковой (ранговой) шкалы.
Все эти критерии основаны на количестве нарушений порядка (так называемых инверсий, обозначаемых через 1). Количество инверсий можно определить, если расположить в порядке возрастания значения одной из двух переменной между которыми необходимо установить степень взаимосвязи, а рядом с ними записать соответствующие значения другой переменной. Число нарушений порядка расположения второй переменной и есть количество инверсий. Это количество вместе с количеством соблюдений порядка (проверсий, обозначаемых через Р) используется в различных формулах для определения меры связанности, которые дают значения этого параметра в диапазоне от -1 до +1.
Гамма
Гамма вычисляется по простой формуле:
Если инверсий не наблюдается (I = 0), то мы имеем у =1 (полную зависимость). Если же не встречается проверсий, а только инверсии (Р = 0), то говорят о максимально разнонаправленной зависимости (у = -1). Если Р= I, зависимости вообще не существует (y=0).
d Сомера
Существуют две асимметричных и симметричная меры связанности d Сомера. Для их вычисления используется формула для ус корректирующим членом Т, который учитывает количество связей зависимых переменных (одинаковых значений, встречающихся в измерениях):
Для сопряженной асимметричной меры связанности d Сомера используется корректирующий член Г, соответствующий количеству связей независимой переменной. В знаменателе симметричной rf-статистики Сомера стоит среднее значение двух асимметричных коэффициентов.
Тау-б (T b Кендалла)
Этот коэффициент одновременно учитывает связи как зависимых, так и независимых переменных:
Где tb может приобретать значения -1 и +1 только для квадратных таблиц сопряженности.
Тау-ц (tc) Кендалла
Этот критерий может достигать значений – 1 и +1 в любых таблицах:
Здесь N – общая сумма частот; m – наименьшее из количеств строк и столбцов.
20. Выборка: виды, алгоритмы формирования выборки. Объем и ошибка выборки.
Выборка или выборочная совокупность — это необходимый для социологического исследования минимум результатов (случаев, испытуемых, объектов, событий, образцов) отобранных с помощью определённой процедуры из генеральной совокупности.
Выборка – самая представительная часть ген. Сов-ти, в которой закон распределения признака соответствует таковому в генеральной совокупности.
Генеральная совокупность – объект исследования, который локализован территориально, во времени, по дем. И соц. Признакам и на который распространяются выводы исследования.
Единицы наблюдения – элементы выборочной совокупности, подлежащие изучению (респонденты).
Характеристики выборки:
Качественная характеристика выборки – что именно мы выбираем и какие способы построения выборки мы для этого используем.
Количественная характеристика выборки – сколько случаев выбираем, другими словами объём выборки.
Объём
выборки —
количество единиц в выборочной
совокупности. Из статистических
соображений рекомендуетс
По
способу отбора (способу формирования)
выборки единиц из генеральной совокупности
распространены следующие виды
выборочного
наблюдения:
простая случайная выборка (собственно-случайная);
типическая (стратифицированная);
серийная (гнездовая);
механическая;
комбинированная;
ступенчатая.
Простая случайная выборка (собственно-случайная) есть отбор единиц из генеральной совокупности путем случайного отбора, но при условии вероятности выбора любой единицы из генеральной совокупности. Отбор проводится методом жеребьевки или по таблице случайных чисел.
Типическая (стратифицированная) выборка предполагает разделение неоднородной генеральной совокупности на типологические или районированные группы по какому-либо существенному признаку, после чего из каждой группы производится случайный отбор единиц.
Для серийной (гнездовой) выборки характерно то, что генеральная совокупность первоначально разбивается на определенные равновеликие или неравновеликие серии (единицы внутри серий связаны по определенному признаку), из которых путем случайного отбора отбираются серии и затем внутри отобранных серий проводится сплошное наблюдение.
Механическая выборка представляет собой отбор единиц через равные промежутки (по алфавиту, через временные промежутки, по пространственному способу и т.д.). При проведении механического отбора генеральная совокупность разбивается на равные по численности группы, из которых затем отбирается по одной единице.
Комбинированная выборка основана на сочетании нескольких способов выборки.
Многоступенчатая выборка есть образование внутри генеральной совокупности вначале крупных групп единиц, из которых образуются группы, меньшие по объему, и так до тех пор, пока не будут отобраны те группы или отдельные единицы, которые необходимо исследовать.
Выборочный отбор может быть повторным и бесповторным. При повторном отборе вероятность выбора любой единицы не ограничена. При бесповторном отборе выбранная единица в исходную совокупность не возвращается.
Для отобранных единиц рассчитываются обобщенные показатели (средние или относительные) и в дальнейшем результаты выборочного исследования распространяются на всю генеральную совокупность.
Основной задачей при выборочном исследовании является определение ошибок выборки. Принято различать среднюю и предельную ошибки выборки. Для иллюстрации можно предложить расчет ошибки выборки на примере простого случайного отбора.
Расчет средней ошибки повторной простой случайной выборки производится следующим образом:
cредняя ошибка для средней
(11.1)
cредняя ошибка для доли
(11.2)
Расчет средней ошибки бесповторной случайной выборки:
средняя ошибка для средней
(11.3)
средняя ошибка для доли
(11.4)
Расчет предельной
ошибки
повторной
случайной выборки:
предельная ошибка для средней
предельная ошибка для доли
(11.5)
где t - коэффициент кратности;
Расчет предельной ошибки бесповторной случайной выборки:
предельная ошибка для средней
(11.6)
предельная ошибка для доли
(11.7)
Следует обратить внимание на то, что под знаком радикала в формулах при бесповторном отборе появляется множитель, где N - численность генеральной совокупности.
Что касается расчета ошибки выборки в других видах выборочного отбора (например, типической и серийной), то необходимо отметить следующее.
Для типической выборки величина стандартной ошибки зависит от точности определения групповых средних. Так, в формуле предельной ошибки типической выборки учитывается средняя из групповых дисперсий, т.е.
(11.8)
При серийной выборке величина ошибки выборки зависит не от числа исследуемых единиц, а от числа обследованных серий (s) и от величины межгрупповой дисперсии:
(11.9)
Серийная выборка, как правило, проводится как бесповторная, и формула ошибки выборки в этом случае имеет вид
(11.10)
где
-
межсерийная дисперсия; s - число отобранных
серий; S - число серий в генеральной
совокупности.
Все вышеприведенные формулы применимы для большой выборки. Кроме большой выборки используются так называемые малые выборки (n < 30), которые могут иметь место в случаях нецелесообразности использования больших выборок.
При расчете ошибок малой выборки необходимо учесть два момента:
1) формула средней ошибки имеет вид
(11.11)
2)
при определении доверительных интервалов
исследуемого показателя в генеральной
совокупности или при нахождении
вероятности допуска той или иной ошибки
необходимо использовать таблицы
вероятности
Стьюдента,
где Р = S (t, n), при этом Р определяется в
зависимости от объема выборки и t.
