Интенсивные системы телеизмерения.
Системы телеизмерения (СТИ) можно классифицировать по различным признакам. Наиболее распространена классификация по параметру, с помощью которого передается значение измеряемой величины по линии связи
В системах интенсивности величина, подлежащая телеизмерению, датчиком преобразуется в сигнал постоянного тока или напряжения постоянного тока, поступает в устройство контролируемого пункта, далее передаётся по линии связи в устройство пункта управления, где отображается индикатором. Таким образом, по линии связи передаётся интенсивность сигнала постоянного тока, откуда и произошло название этого типа систем.
Система интенсивности проста по своему устройству и была в своё время первым реализованным типом систем телеизмерения. Основной недостаток систем интенсивности - низкая точность, погрешность телеизмерения систем интенсивности вследствие воздействия помех и изменения сопротивления линии связи в пределах 2-3%.
В частотных системах переменного тока сигнал постоянного тока датчика поступает в устройство контролируемого пункта, где модулируется методами частотной модуляции, далее частотно - модулированный сигнал передаётся по линии связи в устройство пункта управления, где демодулируется и измеряемая величина отображается индикатором.
Точность частотной системы переменного тока выше, чем системы интенсивности, так как частотная модуляция обладает более высокой помехоустойчивостью по сравнению с прямой передачей сигнала постоянного тока.
В частотно - импульсных системах применяется не частотная, а частотно - импульсная модуляция, по линии связи передаётся частотно - импульсный модулированный сигнал. Помехоустойчивость этого типа модуляции несколько выше по сравнению частотной модуляцией.
Во время - импульсных системах применяются время - импульсные методы модуляции, обеспечивающие чуть более высокую помехоустойчивость по сравнению с частотно - импульсной модуляцией.
В кодоимпульсных системах применяется кодоимпульсная модуляция. Сигнал постоянного тока датчика в устройстве контролируемого пункта преобразуется в кодовую комбинацию и каждый символ кодовой комбинации передаётся по линии связи в устройство пункта управления, где кодовая комбинация декодируется и отображается индикатором.
Кодоимпульсные системы обладают наибольшей точностью по сравнению с другими типами систем телеизмерения. В них не происходит уменьшение точности при передаче информационных сигналов на большие расстояния благодаря комплексу мер, применяемых для повышения помехоустойчивости телемеханической передачи. Поэтому точность кодоимпульсных систем телеизмерения определяется точностью датчика. Система состоит из набора типовых функциональных узлов и блоков, выполненных в основном на интегральных микросхемах и построенные на их базе комплексов телемеханических устройств. Эти комплексы выполняют фуекции передачи и приёма информации, а также простейшей её обработки на пункте управления (ПУ) и контролируемом пункте (КП).
На КП источниками информации являются разнообразные датчики измеряемых параметров, датчики состояния объектов, машинные носители информации, устройства ручного ввода информации и т.д.
На ПУ источниками информации могут быть пульт с ключами и другими элементами управления объектами, датчики установок автоматических регуляторов, машинные носители, ЭВМ и дисплеи.
Приёмниками информации на ПУ являются различные приборы на щите и пульте диспетчера или оператора, ЭВМ, дисплей и машинные носители информации.
В поисковых системах телеизмерений приняты следующие принципы:
1. Система приоритетов для различных видов информации с соответствующим распределением во времени при её передаче.
2. Система приоритетов для различных КП с соответствующим во времени их обслуживанием.
3. Адресно-групповой метод передачи информации обладающей широкими возможностями выбирать и изменять различное число КП.
4. Унификация сопряжения.
5. Унификация конструктивной базы.
6. Агрегатирование технических средств и т.д.
Перечисленные принципы построения системы позволяют:
– сопрягать блоки и устройства с устройствами других моделей;
– разрабатывать различные устройства телемеханики из ограниченного набора функциональных блоков;
– увеличивать серийность производства и сокращать стоимость аппаратуры путём централизованного производства функциональных блоков с типовыми конструкциями;
– сокращать объём и сроки разработки, проектирования, а также упрощать эксплуатацию устройств телемеханики.
Функциональные блоки системы делятся следующие группы:
– источники информации;
– приёмники информации;
– приёмники-источники.
Кроме того, по выполняемым функциям функциональные блоки делят на:
первичные преобразователи;
преобразователи кодов и сигналов для передачи и приёма информации;
блоки управления передачей и приёмом определённых видов информации;
блоки обработки и отображения информации;
блоки режима работы, определяющие алгоритм устройства (централи).
Преобразователи кодов и сигналов (ПКС) – модуляторы, демодуляторы, преобразователи последовательного кода в параллельный; устройства памяти и т.д.
Блоки управления передачей и приёмом информации – телеуправление, производственно-статистические, кодовые команды и т.д.
Блоки обработки и отображения информации – преобразователи кодов, ЦАП, блоки сравнения кодов, цифровой индикации, управления памятью и т.д.
Блоки режима работы – централь координирует работу всех блоков, объединённых в устройство, реализует выбранную систему предметов, устанавливает связь между блоками по заданным параметрам, формирует сигналы неисправностей и т.д.
