- •Содержание
- •Глава 1 принципы построения и архитектура эвм 4
- •Глава 2 информационно-логические основы эвм 43
- •Глава 3 Классификация элементов и узлов эвм 67
- •Глава 4 функциональная и структурная организация эвм 107
- •Принципы построения и архитектура эвм
- •1.1. Основные характеристики эвм
- •1.2. Классификация средств эвм
- •1.3. Общие принципы построения современных эвм
- •История развития вт (эвм)
- •1 Поколение эвм (1940-1955 г.Г.)
- •2 Поколение эвм (1956-1960 г.Г.)
- •3 Поколение эвм (1960-1970 г.Г.)
- •4 Поколение эвм (1970-1990 г.Г.)
- •5 Поколение эвм (1990-2000 г.Г.)
- •6 Поколение эвм (2000 г. По н/вр)
- •Модульность построения, магистральность, иерархия управления
- •Иерархический принцип построения памяти
- •1.4. Функции программного обеспечения
- •Классификация программного обеспечения
- •Информационно-логические основы эвм
- •2.1. Системы счисления
- •2.2.1. Представление числовой информации
- •2.2.2. Представление других видов информации
- •2.3. Арифметические основы эвм
- •2.3.1. Машинные коды
- •2.3.2. Арифметические операции над двоичными числами с плавающей точкой
- •2.3.4. Арифметические операции над двоично-десятичными кодами чисел
- •2.4 Логические основы эвм
- •2.4.1.Основные сведения из алгебры логики
- •2.4.2. Законы алгебры логики
- •2.4.3. Понятие о минимизации логических функций
- •2.4.4. Техническая интерпретация логических функций
- •Классификация элементов и узлов эвм
- •3.1. Классификация элементов и узлов эвм
- •3.2. Комбинационные схемы
- •Компаратор
- •3.2. Схемы с памятью
- •3.3 Узлы эвм
- •3.5 Проблемы развития элементной базы
- •Функциональная и структурная организация эвм
- •4.1. Общие принципы функциональной и структурной организации эвм
- •4.2. Организация функционирования эвм с магистральной архитектурой
- •4.3. Организация работы эвм при выполнении задания пользователя
- •4.4.1. Отображение адресного пространства программы на основную память
- •4.4.2. Адресная структура команд микропроцессора и планирование ресурсов
- •4.4.3. Виртуальная память
- •4.5. Система прерываний эвм
5 Поколение эвм (1990-2000 г.Г.)
6 Поколение эвм (2000 г. По н/вр)
Появилась возможность распараллеливания вычислительного процесса за счет использования 2-х или более процессоров, объединенных в вычислительное ядро. Появилась всемирная сеть Интернет, обеспечивающая потенциальный доступ любого компьютера к глобальной информации. Стали бурно развиваться телекоммуникационные технологии: появилась возможность передавать большие объемы информации на большие расстояния (радио-, спутниковая связь). Так информация хранится на разных ЭВМ, то появилась необходимость разработки концепции распределенной обработки и хранения данных и алгоритмов параллельных вычислений, позволяющих увеличить быстродействие систем обработки информации. Нейро-сети и нейро-технологии позволили это сделать.
Модульность построения, магистральность, иерархия управления
Модульность построения предполагает выделение в структуре ЭВМ достаточно автономных, функционально и конструктивно законченных устройств (процессор, модуль памяти, накопитель на жестком или гибком магнитном диске).
Модульная конструкция ЭВМ делает ее открытой системой, способной к адаптации и совершенствованию. К ЭВМ можно подключать дополнительные устройства, улучшая ее технические и экономические показатели. Появляется возможность увеличения вычислительной мощности, улучшения структуры путем замены отдельных устройств на более совершенные, изменения и управления конфигурацией системы, приспособления ее к конкретным условиям применения в соответствии с требованиями пользователей.
В современных ЭВМ принцип децентрализации и параллельной работы распространен как на периферийные устройства, так и на сами ЭВМ (процессоры). Появились вычислительные системы, содержащие несколько вычислителей (ЭВМ или процессоры), работающие согласованно и параллельно. Внутри самой ЭВМ произошло еще более резкое разделение функций между средствами обработки. Появились отдельные специализированные процессоры, например сопроцессоры, выполняющие обработку чисел с плавающей точкой, матричные процессоры и др.
Все существующие типы ЭВМ выпускаются семействами, в которых различают старшие и младшие модели. Всегда имеется возможность замены более слабой модели на более мощную. Это обеспечивается информационной, аппаратурной и программной совместимостью. Программная совместимость в семействах устанавливается по принципу снизу-вверх, т.е. программы, разработанные для ранних и младших моделей, могут обрабатываться и на старших, но не обязательно наоборот.
Модульность структуры ЭВМ требует стандартизации и унификации оборудования, номенклатуры технических и программных средств, средств сопряжения - интерфейсов, конструктивных решений, унификации типовых элементов замены, элементной базы и нормативно-технической документации. Все это способствует улучшению технических и эксплуатационных характеристик ЭВМ, росту технологичности их производства.
Децентрализация управления предполагает иерархическую организацию структуры ЭВМ. Централизованное управление осуществляет устройство управления главного, или центрального, процессора. Подключаемые к центральному процессору модули (контроллеры и КВВ) могут, в свою очередь, использовать специальные шины или магистрали для обмена управляющими сигналами, адресами и данными. Инициализация работы модулей обеспечивается по командам центральных устройств, после чего они продолжают работу по собственным программам управления. Результаты выполнения требуемых операций представляются ими “вверх по иерархии” для правильной координации всех работ.
Иерархический принцип построения и управления характерен не только для структуры ЭВМ в целом, но и для отдельных ее подсистем. Например, по этому же принципу строится система памяти ЭВМ.
Так, с точки зрения пользователя желательно иметь в ЭВМ оперативную память большой информационной емкости и высокого быстродействия. Однако одноуровневое построение памяти не позволяет одновременно удовлетворять этим двум противоречивым требованиям. Поэтому память современных ЭВМ строится по многоуровневому, пирамидальному принципу.
