- •Оглавление
- •1. Финансовое планирование в управлении предприятием 4
- •1. Финансовое планирование в управлении предприятием
- •2. Классификация финансовых планов
- •3. Понятие и классификация инвестиционных проектов.
- •Вопрос 2. Классификация проектов.
- •4. Оценка инвестиционного проекта.
- •5. Значение ит в финансовом планировании
- •6. Программное обеспечение финансового менеджмента
- •Вопрос 7. Системы бизнес-интеллекта
- •Вопрос 8. Хранилища данных
- •Вопрос 9. Характеристики olap-систем
- •Вопрос 10. Разновидности многомерного хранения данных
- •11. Основные принципы и способы формирования бюджета. Оптимизация бюджета. Информационная (компьютерная) технология формирования бюджета.
- •12. Принципы формирования портфеля инвестиций. Компьютерная технология формирования портфеля.
- •13.Понятие математического программирования. Классификация задач математического программирования
- •14. Задача условной оптимизации ( линейного программирования).Целевая функция и ограничения. Способы решения задачи условной оптимизации. Компьютерная технология решения задачи условной оптимизации
- •Вопрос 5. Формулирование задачи нелинейного программирования в общем виде. Способы решения задачи нелинейного программирования (метод ньютона и т.Д.).
- •16. Понятие Динамического программирования. Классификация задач динамического программирования. Компьютерная технология решения задачи динамического программирования.
- •17. Понятие числового и временного рядов. Модели обработки временных рядов. Компьютерная технология обработки временных рядов.
- •18. Область применения и сущность имитационного моделирования. Классификация имитационных моделей. Компьютерная технология проведения имитационного моделирования.
- •19.Назначение и классификация специализированных математических пакетов. Перечень операций, выполняемых в пакете Mathcad.
14. Задача условной оптимизации ( линейного программирования).Целевая функция и ограничения. Способы решения задачи условной оптимизации. Компьютерная технология решения задачи условной оптимизации
Линейные задачи являются элементом более широкого класса задач – задач принятия решений при наличии ограничений, которые называются задачами условной оптимизации.
Линейное программирование - это раздел математического программирования, в котором рассматриваются методы решения экстремальных задач с линейным функционалом и линейными ограничениями, которым должны удовлетворять искомые переменные.
Задачи линейной оптимизации - это тип экстремальных задач, формирующихся линейными функциями и линейными соотношениями. Так или иначе базовой задачей такого рода является задача линейного программирования, т.е. задача поиска экстремума (максимума или минимума) линейной функции при ограничениях в форме линейных неравенств.
Выбор оптимального решения или сравнение двух альтернативных решений проводится с помощью некоторой зависимой величины (функции), определяемой проектными параметрами. Эта величина называется целевой функцией (или критерием качества). В процессе решения задачи оптимизации должны быть найдены такие значения проектных параметров, при которых целевая функция имеет минимум (или максимум). Таким образом, целевая функция — это глобальный критерий оптимальности в математических моделях, с помощью которых описываются инженерные или экономические задачи.
Набор количественных соотношений между переменными, выражающие определенные требования экономической задачи в виде уравнений или неравенств. Называется системой ограничений.
Модели линейного программирования применяются для нахождения оптимального решения в ситуации распределения дефицитных ресурсов при наличии конкурирующих потребностей. Например, с помощью модели линейного программирования управляющий производством может определить оптимальную производственную программу, т.е. рассчитать, какое количество изделий каждого наименования следует производить для получения наибольшей прибыли при известных объемах материалов и деталей, фонде времени работы оборудования и рентабельности каждого вида изделий. Большая часть разработанных для практического применения оптимизационных моделей сводится к задачам линейного программирования. Однако с учетом характера анализируемых операций и сложившихся форм зависимости факторов могут применяться и модели других типов. При нелинейных формах зависимости результата операции от новых факторов - модели нелинейного программирования; при необходимости включения в анализ фактора времени - модели динамического программирования; при вероятностном влиянии факторов на результат операции - модели математической статистики.
Линейное программирование имеет дело с оптимизацией моделей, в которых целевая функция линейно зависит от переменных решения. Ограничения также представляют собой линейные неравенства или уравнения относительно переменных решения. Требование линейности означает, что и целевая функция, и ограничения могут представлять собой только суммы произведений постоянных коэффициентов на переменные решения. Искусство математического моделирования состоит в том, чтобы учесть как можно больше факторов по возможности простыми средствами. Именно в силу этого процесс моделирования часто носит итеративный характер. На первой стадии строится относительно простая модель и проводится ее исследование, позволяющее понять, какие из существенных свойств изучаемого объекта не улавливаются данной формальной схемой. Затем происходит уточнение, усложнение модели.
В большинстве случаев первой степенью приближения к реальности является модель, в которой все зависимости между переменными, характеризующими состояние объекта, предполагаются линейными. Здесь имеется полная аналогия с тем, как весьма важна и зачастую исчерпывающая информация о поведении произвольной функции получается на основе изучения ее производной -- происходит замена этой функции в окрестности каждой точки линейной зависимостью. Значительное количество экономических, технических и других процессов достаточно хорошо и полно описывается линейными моделями.
Можно выделить два типа задач оптимизации — безусловные и условные. Безусловная задача оптимизации состоит в отыскании максимума или минимума действительной функции от действительных переменных и определении соответствующих значений аргументов на некотором множестве а n-мерного пространства.
Условные задачи оптимизации, или задачи с ограничениями, — это такие, при формулировке которых задаются некоторые условия (ограничения) на множестве а. Эти ограничения задаются совокупностью некоторых функций, удовлетворяющих уравнениям или неравенствам.
Ограничения равенства выражают зависимость между проектными параметрами, которая должна учитываться при нахождении решения. Эти ограничения отражают законы природы, наличие ресурсов, финансовые требования и т. п.
Свойства задач линейной оптимизации.
1. В каждой задаче линейной оптимизации существует единственный критерий эффективности, который необходимо максимизировать или минимизировать.
2. В задачах линейной оптимизации обязательно присутствуют ограничения, которые и определяют наличие максимума (минимума) целевой функции.
3. Целевая функция и ограничения имеют характер линейных зависимостей.
Если целевая функция и функции ограничений – линейные функции, то соответствующая задача поиска экстремума является задачей линейного программирования.
Методы решения задач линейного программирования.
Тип задачи |
Название задачи |
Методы решения |
1 |
Задачи общего вида |
Универсальные методы |
2 |
Задача распределенного общего вида |
Универсальные методы |
3 |
Транспортная задача |
Универсальные (специальные) методы |
4 |
Задача о назначениях |
Универсальные (специальные) методы |
Условия представления задач предметной области в виде задач линейного программирования.
1. Делимость. Все показатели производственно-технологического процесса могут быть увеличены или уменьшены при сохранении их взаимной пропорциональности.
2. Аддитивность. Полное количество каждого из потребленных ресурсов равняется сумме одноименных ресурсов, затраченных при реализации всех применявшихся технологических процессов.
Применительно к фиксированному производственно-технологическому процессу приведенные условия означают, что доходы строго пропорциональны затраченным ресурсам, а непропорциональный эффект (технологического или экономического характера) оказывается невозможным.
При решении задач условной оптимизации целесообразно использовать методы безусловной оптимизации, учитывая большое количество разработанных по этим методам программ. С этой целью задача условной оптимизации сводится к задаче безусловной оптимизации устранением ограничений путем преобразования параметра XI, на значения которого наложены ограничения, в неограничиваемый.
Сведение исходной задачи условной оптимизации к последовательности задач безусловной оптимизации может быть выполнено с помощью функций штрафа.
Метод отжига - метод поисковой оптимизации, в котором для увеличения вероятности выхода из областей притяжения локальных минимумов допускается переход в точки с худшим значением целевой функции с некоторой вероятностью
Метод распространения ограничений - метод решения задач условной оптимизации, основанный на сокращении интервалов значений управляемых переменных (или мощности множеств значений этих переменных) благодаря учету исходных ограничений. Сокращенные интервалы в явном виде определяют подмножество допустимых решений
Различают методы условной и безусловной оптимизации по наличию или отсутствию ограничений. Для реальных задач характерно наличие ограничений, однако методы безусловной оптимизации также представляют интерес, поскольку задачи условной оптимизации с помощью специальных методов могут быть сведены к задачам без ограничений.
Суть метода заключается в преобразовании задачи условной оптимизации в задачу безусловной оптимизации с помощью образования новой целевой функции.
Для решения задач данного типа применяются такие методы как:
1) Симплекс-метод, разработанный Danzig'oM около 50 лет назад, перебирает "базисные" решения, построенные путем фиксирования достаточного количества переменных, чтобы матрица системы ограничений Ах = b стала квадратной. Такая полученная система может быть решена для единственных значений оставшихся переменных. Базисные решения являются экстремальными граничными точками области допустимых решений, определяемой системой ограничений, и симплекс-метод может рассматриваться как прохождение от одной такой точки к другой по границе области.
Метод барьеров или внутренних точек, с другой стороны, обходит точки из внутренней части области допустимых значений. Эта группа методов происходит от технологий нелинейного программирования, разработанных и популяризованных в 60-х гг. Fiacco и McCormick, но их приложения к линейному программированию датируются только 1984 г.
Родственная ЛП задача целочисленного программирования (или целочисленного линейного программирования, точнее говоря) допускает только целочисленные значения переменных. Задачи ЦП обычно ближе к реальным задачам, чем задачи ЛП, но намного более трудоемки в решении. Наиболее широко используемые методы решения задач ЦП используют решение серии задач ЛП, чтобы найти целочисленные решения и доказать оптимальность. Поэтому большая часть ПО ЦП построена на базе ПО ЛП, и данный FAQ применим для решения задач этих двух видов.
Линейное и целочисленное программирование пригодно для моделирования множества различных проблем в планировании, маршрутизации, разработке расписаний, назначениях и дизайне. ЛП и его расширения используются в транспортной индустрии, энергетике и машиностроении.
В жизни решение задач оптимизации занимает очень много времени и это достаточно трудоемкий процесс, где необходимо учесть все параметры. И чтобы облегчить нам работу по поиску оптимума программисты разных стран написали большое количество программ для решения задач оптимизации практически во всех отраслях производства и сферах нашей жизни.
Система Mathematica объединяет в себе запас мировых математических знаний, накопленных в справочной литературе, и использует свои собственные
революционные алгоритмы, чтобы развивать эти знания.
Умение проводить аналитические расчеты — одно из главных достоинств этой программы, автоматизирующей математические расчеты. Mathematica умеет преобразовывать и упрощать алгебраические выражения, дифференцировать и вычислять определенные и неопределенные интегралы, вычислять конечные и бесконечные суммы и произведения, решать алгебраические и дифференциальные уравнения и системы, а также разлагать функции в ряды и находить пределы
Mathematica позволяет строить двух и трехмерные графики различных типов в виде точек и линии на плоскости, поверхностей, а также контурные, градиентные (dencity plot), параметрические. Mathematica выполняет построение графика в три этапа. На первом создается множество графических примитивов, на втором они преобразуются в независимое от вычислительной платформы описание на языке PostScript, а на третьем это описание переводится в графический формат для той системы, на которой установлена Mathematica.
Система MatLab
Данная система ориентирована на матричные и векторные вычисления (её названием является сокращение словосочетания Matrix Laboratory) и предназначена в основном для численного моделирования технических систем. Её последние версии содержат элементы универсальных систем компьютерной алгебры: специальный модуль MatLab Notebook, позволяющий, в том числе, использовать возможности Microsoft Word для оформления документов, а также приобретённый у компании Maple Waterloo модуль основной символьной библиотеки системы Maple V 4.0 для выполнения некоторых аналитических расчётов. Входной язык в определённой мере напоминает BASIC (с элементами Фортрана и Паскаля). Интерфейс менее доступный и красочный, чем у системы MathCAD, однако скорость вычислений выше.
Использование в образовании нецелесообразно; система предназначена для профессиональной работы в области математики и смежных областях.
Система MatLab предназначена для выполнения инженерных и научных расчетов и высококачественной визуализации получаемых результатов. Эта система применяется в математике, вычислительном эксперименте, имитационном моделировании.
В пакет входит множество хорошо проверенных численных методов (решателей), операторы графического представления результатов, средства создания диалогов. Отличительной особенностью MatLab по сравнению с обычными языками программирования является матричное представление данных и большие возможности матричных операций над данными. Используя пакет MatLab можно, как из кубиков конструктора, построить довольно сложную математическую модель, или написать свою программу (весьма похожую на Фортран-программу). А можно используя SIMULINK и технологию визуального моделирования составить имитационную модель или систему автоматического регулирования.
Гибкий язык MatLab дает возможность инженерам и ученым легко реализовывать свои идеи. Мощные численные методы и графические возможности позволяют проверять предположения и новые возникающие идеи, а интегрированная среда дает возможность быстро получать практические результаты.
