- •Вопрос 1. Последовательное и параллельное соединение проводников. Закон Кирхгофа.
- •Вопрос 2. Эксплуатационные работы на тп, ктп, рп. Перечень работ при то.
- •Вопрос 3. Грозозащита и защита от перенапряжений вл 0,4-10 кВ.
- •Вопрос 1. Режимы работы электрической цепи.
- •Вопрос 2. Предохранители 10 кВ: типы, назначение, устройство, принцип действия.
- •Вопрос 3. Выправка опор: допустимые пределы наклона опор, причины наклона, возможные последствия при сверхнормативном наклоне опор. Технология и методы выправки опор.
- •Вопрос 1. Закон Ома для замкнутой цепи, имеющей эдс.
- •Вопрос 2. Низковольтные и высоковольтные вентильные разрядники: типы, назначение, устройство, принцип работы, техническое обслуживание.
- •Вопрос 3. Осмотры вл 0,4-10 кВ: виды, периодичность. Технология осмотров вл 0,4-10 кВ: элементы опор, подлежащие осмотру, возможные дефекты элементов. Техническая документация по результатам осмотров.
- •Вопрос 1. Процесс однофазного замыкания на землю в сетях с изолированной нейтралью.
- •Вопрос 2. Устройство и принцип работы релейной защиты линий 0,4-10 кВ.
- •Вопрос 3. Техническое обслуживание вл 0,4-10 кВ: перечень работ по техническому обслуживанию вл, периодичность.
- •Вопрос 1. Падение напряжения. Электрическое сопротивление и проводимость.
- •Вопрос 2. Низковольтные предохранители: типы, назначение, устройство, принцип действия.
- •Вопрос 3. Заземляющие устройства на вл: назначение, нормы, величины сопротивления заземляющих устройств, конструктивное исполнение.
- •Вопрос 1. Основные понятия переменного тока.
- •Вопрос 2. Основное оборудование тп, ктп, рп.
- •Вопрос 3. Опоры вл: детали опор, материал деталей опор. Назначение типов опор.
- •4.6.2. Железобетонные приставки для вл 0,4-10 кВ типа:
- •4.8. В условных обозначениях стоек, опор, приставок буквы и цифры означают:
- •4.11.2. В условных обозначениях изоляторов буквы и цифры означают:
- •Вопрос 1. Принципы получения 3-х фазных эдс. Достоинства 3-х фазной цепи. Соединение обмоток генератора звездой и треугольником.
- •Соотношение между линейными и фазными токами и напряжениями.
- •Треугольник
- •Соотношение между линейными и фазными токами и напряжениями
- •Вопрос 2. Паспортные данные силового трансформатора 0,4-10 кВ. Краткая характеристика.
- •Вопрос 3. Замена проводов – демонтаж и монтаж провода: очередность, раскатка провода, подвеска на опоры, натяжка. Требования тб при замене провода.
- •Вопрос 1. Трех и четырех проводные цепи. Назначение нейтрального провода.
- •Вопрос 2. Трансформаторы тока 0,4-10 кВ: типы, назначение, устройство, принцип работы, выбор, техническое обслуживание.
- •Вопрос 3. Провода и требования, предъявляемые к ним. Конструкция проводов, область применения проводов. Изолированные провода для вл 0,4-10 кВ.
- •Вопрос 1. Схема включения амперметра; вольтметра.
- •Вопрос 2. Рубильники 0,4 кВ: типы, назначение, устройство, выбор, техническое обслуживание.
- •Вопрос 3. Изоляторы для вл 0,4-10 кВ: марки изоляторов, назначение, характеристика.
- •Вопрос 1. Приборы определения места повреждения в воздушных и кабельных линиях электропередачи 0,4-10 кВ.
- •Вопрос 2. Масляные выключатели 10 кВ: типы, устройство, назначение, принцип гашения дуги.
- •Вопрос 1. Закон Ома для замкнутой электрической цепи.
- •Вопрос 2. Низковольтные и высоковольтные вентильные разрядники: типы, назначение, устройство, принцип работы, техническое обслуживание.
- •Вопрос 3. Осмотры вл 0,4-10 кВ: виды, периодичность. Технология осмотров вл 0,4-10 кВ: элементы опор, подлежащие осмотру, возможные дефекты элементов. Техническая документация по результатам осмотров.
- •Вопрос 1. Электрическая ёмкость. Соединения конденсаторов.
- •Соединение конденсаторов
- •Вопрос 2. Автоматические выключатели 0,4 кВ: типы, назначение, устройство, принцип работы тепловой защиты и защиты от междуфазных коротких замыканий на вл 0,4 кВ, техническое обслуживание.
- •Вопрос 3. Заземляющие устройства на вл 0,4 кВ: грозозащитные, повторные заземления нулевого провода, величины сопротивления, нормы заземляющих устройств.
- •Вопрос 1. Взаимоиндукция. Применение принципа взаимоиндукции.
- •Вопрос 2. Разъединители: типы, назначение, устройство, принцип работы. Приводы разъединителей: типы, назначение, устройство. Техническое обслуживание разъединителей и их приводов.
- •Вопрос 3. Процесс однофазного замыкания на землю в сети 10 кВ на ж/б опорах с изолированной нейтралью: причины и последствия. Учет ж/б опор, через которые протекал ток короткого замыкания.
- •Вопрос 1. Проводники и диэлектрики, полупроводники.
- •Вопрос 2. Принцип и устройство приспособления для регулирования уровня напряжения в силовых трансформаторах.
- •Переключение без возбуждения
- •Переключатели числа витков без возбуждения
- •Регулирование под нагрузкой
- •Вопрос 3. Демонтаж опор, технология выполнения работ, требования по тб.
- •Вопрос 1. Линейные токи и напряжения, соотношения между ними. Напряжения
- •Вопрос 2. Выключатели нагрузки: типы, назначение, устройство, принцип работы. Приводы выключателей нагрузки: типы, назначение, устройство. Техническое обслуживание выключателей нагрузки и приводов.
- •Вопрос 3. Понятие о габаритах на пересечениях и при сближениях вл 0,4-10 кВ с инженерными сооружениями, величины основных габаритов. Замеры габаритов: инструменты, приспособления, технология замеров.
- •Вопрос 1. Категории потребителей электрической энергии. Качество электрической энергии.
- •Вопрос 2. Виды повреждений и определение мест повреждения на вл 0,4-10 кВ. Устройство поиска коротких замыканий на воздушных линиях 0,4 кВ с неизолированными проводами.
- •Основные технические характеристики:
- •Поиск повреждения в сети 0,4 кВ.
- •Вопрос 3. Проверка загнивания деревянных опор: периодичность, виды загниванич, инструмент и приспособления, понятие об опасных сечениях.
- •Вопрос 1. Магнитное поле электрического тока. Магнитная индукция.
- •Вопрос 2. Надписи, наносимые на оборудование рп, тп, ктп.
- •Вопрос 3. Работа на вл: подъем на опору и работа на ней, меры безопасности. Установка раскрепляющих устройств.
- •Вопрос 1. Проводник с током в магнитном поле. Правило левой руки.
- •Вопрос 2. Техническое обслуживание электрооборудования тп (зтп, ктп, мтп): виды работ, периодичность, назначение.
- •Вопрос 3. Марки и конструкции силовых кабелей 0,4-10 кВ. Кабельные муфты (соединительные, концевые).
- •Токопроводящие жилы.
- •Оболочки.
- •Защитные покровы.
- •Арматура для кабелей с бумажной изоляцией.
- •Арматура для кабелей с пластмассовой изоляцией.
- •Вопрос 1. Активное и реактивное сопротивление. Единицы измерения.
- •Удельное сопротивление некоторых веществ (при t 20° c)
- •Вопрос 2. Принцип и устройство приспособления для регулирования уровня напряжения в силовых трансформаторах.
- •Переключение числа витков без возбуждения
- •Вопрос 3. Крепление проводов вл на промежуточных и анкерных опорах.
- •Вопрос 1. Взаимоиндукция. Применение принципа взаимоиндукции.
- •Вопрос 2. Контакторы и магнитные пускатели. Назначение и устройство. Схема подключения нереверсивного двигателя.
- •Вопрос 3. Проверка сопротивления заземления опор вл 0,4-10 кВ, проверка состояния ж/б опор, проверка сопротивления петли «фаза-ноль».
Вопрос 1. Активное и реактивное сопротивление. Единицы измерения.
Любое тело, по которому протекает электрический ток, оказывает току сопротивление – это явление называется электрическим сопротивлением. Сопротивление обозначается латинскими буквами R, X, Z. Используются также прописные буквы r, x, z. R – активное сопротивление (омическое) X – реактивное сопротивление (индуктивное, емкостное) Z – полное сопротивление (активное) Размерность сопротивления Ом, размерность записывается так – Ом. Сопротивление рассчитывается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать по формуле:
R=U/I
где R – сопротивление U – разность электрических потенциалов на концах проводника (напряжение) I – сила тока, протекающая между концами проводника под действием разности потенциалов (напряжения). Сопротивление различных проводников зависит от материала и называется удельным сопротивление, единица измерения удельного сопротивления Ом*м, а величина удельного сопротивления обозначается символом ρ (ро). Удельное сопротивление Удельное сопротивление проводника может быть рассчитано по формуле:
R= (ρ *l)/S
где ρ – удельное сопротивление проводника l – длинна проводника S – площадь сечения проводника
Удельное сопротивление некоторых веществ (при t 20° c)
Вещество |
Удельное сопротивление, ρ Ом*мм2/м |
Алюминий |
0,028 |
Вольфрам |
0,055 |
Железо |
0,098 |
Золото |
0,023 |
Константан |
0,44-0,52 |
Латунь |
0,025-0,06 |
Манганин |
0,42-0,48 |
Медь |
0,0175 |
Молибден |
0,057 |
Никелин |
0,39-0,45 |
Никель |
0,100 |
Олово |
0,115 |
Ртуть |
0,958 |
Свинец |
0,221 |
Серебро |
0,016 |
Тантал |
0,155 |
Фехраль |
1,1-1,3 |
Хром |
0,027 |
Цинк |
0,059 |
Чем больше сопротивление проводника, тем хуже он проводит электрический ток. Удельное сопротивление обратно пропорционально электрической проводимости. Электрическая проводимость – это способность материала пропускать через себя электрический ток. Из выше изложенного следует – чем меньше сопротивление проводника, тем больше его электрическая проводимость, тем легче электрическому току пройти через этот проводник. Виды электрического сопротивления: Существует четыре вида электрического сопротивления: 1. Омическое сопротивление (активное сопротивление постоянному току) 2. Активное сопротивление (сопротивление переменному току) 3. Индуктивное сопротивление (реактивное сопротивление) 4. Емкостное сопротивление (реактивное сопротивление) Рассмотрим каждое подробно: Омическое сопротивление – сопротивление цепи постоянному току вызывающие безвозвратные потери энергии постоянного тока. Величина омического сопротивления не зависит от величины тока, это сопротивление материала (удельное сопротивление) и рассчитывается по формуле:
R=U/I
где R – сопротивление U – разность электрических потенциалов на концах проводника (напряжение) I – сила тока, протекающая между концами проводника под действием разности потенциалов (напряжения). Причиной потерь постоянного тока при омическом сопротивление является преодоление противодействия материала (его удельного сопротивления), энергия затраченная на преодоления противодействия материала превращается в тепловую. Активное сопротивление – это сопротивление цепи переменному току вызывающие безвозвратные потери энергии переменного тока. Активное сопротивление обозначается латинской буквой Z и рассчитывается по формуле:
Z=R+jX
где Z – импеданс R - величина активного сопротивления X — величина реактивного сопротивления j — мнимая единица Основной причиной вызывающей потери при активном сопротивление остается тоже, что и при омическом сопротивление – преодоление противодействия материала. Есть и другие причины, такие как - поверхностный эффект - вихревые токи - потери за счет излучения электромагнитной энергии и др. Абстрактно омическое и активное сопротивление можно представить как передвижение человека по узкому захламленному (препятствиями) коридору, который основную часть своей энергии будет безвозвратно тратить на преодоление этих препятствий, и чем больше удельное сопротивление проводника, тем захламленнее будет коридор. Индуктивное сопротивление - обусловлено возникновением ЭДС самоиндукции в элементе электрической цепи. Изменение тока и, как следствие, изменение его магнитного поля вызывает препятствующее изменению этого тока ЭДС самоиндукции. Величина индуктивного сопротивления зависит от индуктивности элемента и частоты протекающего тока. Не вызывает безвозвратных потерь энергии. Индуктивное сопротивление рассчитывается по формуле:
XL=ωL=2πfL
где XL - индуктивное сопротивление проводника переменному току ω - циклическая частота переменного тока L - индуктивность проводника (катушки) f- частота На преодоление этого противодействия затрачивается часть энергии переменного тока генератора. Вся эта часть энергии полностью превращается в энергию магнитного поля катушки. Когда ток генератора будет убывать, магнитное поле катушки тоже будет убывать, пересекая витки катушки и индуктируя в цепи ток самоиндукции. Теперь ток самоиндукции будет идти в одном направлении с убывающим током генератора. Таким образом, вся энергия затраченная током генератора на преодоление противодействия тока самоиндукции катушки полностью вернулась в цепь в виде энергии электрического тока. Поэтому индуктивное сопротивление является реактивным, что значит не вызывающим безвозвратных потерь энергии. Абстрактно индуктивное сопротивление можно представить как воду, текущую по трубе в которой установлена крыльчатка (водомер (счетчик воды) который установлен почти в каждой квартире), крыльчатка создает индуктивное сопротивление, чем больше ток (в нашем случае напор воды), тем больше сопротивление, при убывании напора воды крыльчатка пропустить всю оставшуюся воду, так как она крутиться в том же направлении, в которой течет вода. Из этого примера видно что такое индуктивное сопротивление и почему оно не вызывает безвозвратных потерь. Индуктивную нагрузку (сопротивление) вызывают – индукционные печи и плиты, асинхронные двигатели (пылесосы, миксеры, фены) и т.д. При индуктивной нагрузке в сеть генеруется реактивная мощность (ток по фазе отстает от напряжения), которая является паразитной и приводит к перегрузке электрический сетей и требует компенсации. Подробнее об этом будет написано в следующих статьях. Емкостное сопротивление - величина, характеризующая сопротивление, оказываемое переменному току электрической емкостью цепи (или ее участка). Емкостное сопротивление рассчитывается по формуле:
Xc=1/ωC=1/2πfC
где Xc - емкостное сопротивление проводника переменному току C - емкости элемента Вся энергия затрачиваемая источником тока на преодоление емкостного сопротивления превращается в энергию электрического поля конденсатора. Когда конденсатор будет разряжаться вся энергия электрического поля вернется обратно в цепь в виде энергии электрического тока. Таким образом, емкостное сопротивление является реактивным. Абстрактно емкостное сопротивление можно представить как кастрюлю объемом 5 литров, в нашем случае объем кастрюли это не что иное, как ее емкость. При ее наполнении водой до краев, она будет переворачиваться, и вода из неё выливаться, после чего кастрюля будет снова наполняться (так же как и конденсатор при полном заряде будет разряжаться в сеть, после чего вновь заряжаться). При емкостной нагрузке (конденсаторы) в сеть генерируется активная мощность (ток по фазе опережает напряжение). Активная мощность (конденсаторные батареи) используется для компенсации реактивной мощности.
