- •3.1 Основные расчетные схемы нагрева металла сварочными
- •3.3 Способы получения различных внешних характеристик источников сварочного тока
- •3.4 Обоснование норм допустимости дефектов. Система оценим дефектности.
- •Выбор метода обоснования норм допустимости дефектов в зависимости от типов и видов дефектов
- •3.5 61 Погрешности сборки и их учет в размерных цепях. Оптимизация сборочной размерной цепи. Правило согласования допусков.Doc
- •4.1 3 Взаимодействие металла с газами при сварке плавлением. Причины образования пор и неметаллических включений в сварных швах и наплавленном металле.
- •4.2 Технология сварки высокохромистых сталей мартенситного и ферритно-мартенситного класса.
- •4.3 Единая система обозначения и классификация источников питания для сварки
- •4.4 Физические основы узд. Классификация методов узд и их особенности
- •4.5 83. Сущность компенсации погрешности сборки за счет смещения деталей
- •5.1 4. Взаимодействие расплавленного металла с газовой и шлаковой фазой при автоматической сварке под флюсом
- •5.2 93 Теплоустойчивые стали, их особенности и свариваемость. Технология сварки плавлением теплоустойчивых сталей, ее основные особенности
- •5.3 Способы регулирования режимов в сварочных трансформаторах.
- •5.4 Методика и технология узк. Основные параметры узк.
- •5.5 Определение припуска на механическую обработку сварных конструкций. Количество стадий механической обработки.
- •6.2 37. Общие принципы расчета резервуаров
- •6.3 80. Способы регулирования режимов в сварочных выпрямителях
- •Виды сварочных выпрямителей
- •6.4 50 Основные характеристики дефектов, измеряемые узд.
- •6.5 67 Принципы взаимного базирования деталей, узлов и оснастки
- •7.1 74 Рафинирование расплавленного металла при сварке и наплавке.
- •7.2 36 Общие принципы расчета балок и стоек.
- •7.3 47 Основные схемы электрической контактной сварки.
- •7.4 Технология контроля стыковых и тавровых сварных соединений методами узд-к
- •7.5 Сущность сборки, требования к технологическому процессу сборки, выбор последовательности сборки сварной конструкции из деталей. Способы достижения точности размеров при сборке.Docx
- •Методы достижения необходимой точности при сборке
- •8.1 42 Основные закономерности процесса кристаллизации расплавленного металла в сварочной ванне. Понятие о первичной и вторичной кристаллизации металлов. Ликвация примесей и ее причины
- •8.2 39 . Общие принципы расчета трубопроводов
- •8.3 1 Сущность процесса контактной точечной и рельефной связки. Области их применения.
- •8.4 Радиационные методы контроля, их классификация. Основные единицы измерения
- •8.5 Борьба со сварочными деформациями с помощью сварочных приспособлений. Крепление деталей и узлов с деформированием в сборочно-сварочной оснастке.
- •9.1 Деформирование металла при высоких температурах сварки
- •9.2 38 Общие принципы расчета сварных ферм
- •9.3 Сущность процесса контактной шовной сварки.
- •Сущность процесса
- •9.4 Источники тормозного излучения: рентгеновские аппараты и ускорители
- •9.5 Правка сварных конструкций перед их термо и мехобработкой.
- •10.1 Горячие трещины при сварке. Причины их образования и меры борьбы
- •10.2 30 Методы повышения эффективности автоматической сварки под слоем флюса.
- •10.3 Сущность процессов контактной стыковой сварки. Сущность процесса
- •10.5 Основные технологические требования, предъявляемые к сборочно-сварочной оснастке. Порядок проектирования специальной оснастки. Необходимость и рентабельность ее использования.
- •11.1 Холодные трещины при сварке. Влияние различных факторов на их образование. Меры борьбы с образованием холодных трещин при сварке.
- •11.2 Расчет сварных конструкций по допускаемым напряжениям и несущей способности.
- •11.3 Сущность жестких и мягких режимов контактной сварки. Области их применения.
- •11.4 Физические основы радиационного метода контроля. Основные параметры радиационного контроля.
- •11.5 32 Механизация и автоматизация сварочного производства в условиях самостоятельности предприятий и повышения требований к качеству продукции.
- •12.1 Характерные зоны металла в сварных соединениях. Структурные превращения в металлах в зоне
- •12.2 44 Основные принципы проектирования сварных конструкций и технологии их изготовления.
- •12.3 Циклограммы работы машин контактной сварки (точечной, шовной, стыковой — сопротивлением и оплавлением)
- •12.4 27. Методика и техника радиоскопии. Биологическое действие ионизирующего излучения. Основные санитарные нормы и защита от излучения.
- •13.1 95.Технологическая свариваемость сталей и других металлов и сплавов, и факторы ее определяющие. Методы испытания материалов на свариваемость и определение свойств сварочных материалов.
- •13.2 75. Сварка неплавящемся электродом в среде инертных газов. Разновидности способов и области их применения.
- •13.3 Схема однофазной конденсаторной контактной машины:
- •14.1 40. Общий характер термодеформационного воздействия на металл при сварке и его последствия
- •14.3 Особенности технологии контактной сварки (точечной и шовной) низко- и среднеуглеродистых сталей.
- •6.2. Содержание процесса освоения новой продукции и принципы его организации
- •6.3. Организация перехода на выпуск новой продукции
- •6.4. Планирование показателей производства новых изделий
- •15.1 Электрическая дуга как сварочный источник тепла.
- •12.5 Сущность процесса сварки под флюсом.
- •15.3 55 Особенности технологии контактной сварки.
- •Сварка низко- и среднелегированных закаливающихся сталей.
- •15.4 Сущность процесса магнитографической дефектоскопии. Области ее применения.
- •15.5 Технологичность сварных конструкций. Связь между технологичностью и уровнем механизации и автоматизации сборочно-сварочного производства.
- •16.1 Влияние магнитных полей как собственных, так и посторонних (продольных и поперечных) на поведение дуги и жидкого металла сварочной ванны. Методы борьбы с нестабильным горением дуги.
- •16.2 53. Особенности сварки чугуна. Технология горячей, полугорячей и холодной сварки чугуна. Материалы, применяемые при сварке чугуна.
- •Горячая сварка
- •Холодная сварка
- •16.3 Технологические особенности контактной сварки (точечной и шовной) высоколегированных и жаропрочных сталей.
- •16.4 Физическая сущность и классификация магнитных
- •16.5 94. Технические условия
- •Показатели технологичности сварной конструкции.
- •17.1 49. Основные типовые схемы контактной сварки, область их применения.
- •Типовые регуляторы времени и циклов сварки
- •Автоматическое регулирование процессов точечной сварки.
- •Основные параметры контактной сварки и их влияния на качество сварных соединений.
- •17.2 78. Способы легирования металла сварных швов и наплавленного металла. Способы наплавки поверхностей деталей металлом с особыми свойствами, их особенности и область применения.
- •17.3 Технологические особенности контактной сварки (точечной и шовной) алюминия и его сплавов.
- •17.4 29 Методика контроля вихревыми токами и феррорезонансными методам.
- •17.5 Виды технологических процессов заготовительного производства.
- •18.1 10. Классификация сварочных материалов
- •18.2 Технология ручной дуговой сварки.
- •Техника выполнения шва и режим сварки зажигание сварочной дуги
- •Положение и перемещение электрода при сварке
- •Порядок выполнения швов
- •Подбор силы тока и диаметра электрода
- •Достоинства способа:
- •Недостатки способа:
- •Рациональные области применения:
- •18.3 Схема установки для элс. Принцип ее работы.
- •Основные параметры режима электронно-лучевой сварки (таблица 1):
- •Сварка электронным лучом имеет значительные преимущества:
- •Недостатки электронно-лучевой сварки:
- •18.4 Пневматические и гидравлические методы течеискания. Испытания керосином и пенетрантами.
- •18.5 33 Механизация и автоматизация термической резки. Технология раскроя деталей из листового и профильного проката
- •Технология раскроя
- •19.2 Теоретические основы пайки металлов. Физико-химические процессы образования паяного соединения. Способы пайки. Технология пайки. Назначение припоев, флюсов и газовых сред.
- •Достоинства пайки:
- •Классификация пайки Виды капиллярной пайки:
- •Виды некапиллярной пайки:
- •Классификация спаев:
- •Конструкционные параметры паяных соединений (рисунок 2)
- •Припои и паяльные смеси. Требования предъявляемые к ним:
- •Классификация припоев:
- •Классификация флюсов:
- •Механизмы флюсования:
- •Состав флюсов:
- •Флюсы подразделяются на 4 группы:
- •Газовые среды:
- •19.3 57 Особенности формирования сварных швов при элс.
- •19.4 51. Основы, классификация и чувствительность физических методов течеискания
- •19.5 Влияние технологии и последовательности сборки на механизацию и автоматизацию сборочных и сварочных операций. Механизация сборочно-сварочных работ
- •20.1 Сварочные флюсы, их классификация, технические требования, предъявляемые к флюсам для автоматической электродуговой и электрошлаковой сварки и наплавки. Технологические схемы их производства.
- •77) Способы автоматической сварки под флюсом, влияние технологических факторов и режимов сварки на форму и размеры сварных швов. Пути повышения производительности процесса.
- •Достоинства способа:
- •Недостатки способа:
- •Области применения:
- •Пути повышения производительности:
- •Зависимость формы, размеров и состава металла шва от режима сварки и технологических факторов
- •20.2 Сущность плазменной обработки материалов.
- •20.3 43 Основные параметры элс и их влияние на формирование шва.
- •Параметры и показатели элс
- •Основные параметры режима электронно-лучевой сварки (таблица 1):
- •Техника электронно-лучевой сварки
- •Камеры и вакуум для электронно-лучевой сварки
- •Сварка электронным лучом имеет значительные преимущества:
- •20.4 Газоэлектрические течеискатели.
- •20.5 68.Проектирование сборочно — сварочных цехов. Исходные данные. Экономические показатели проектирования сварочных цехов и участков.
- •21.1 Влияние сварочных материалов на свойства сварных соединений из сталей различных структурных классов и легирования.
- •21.2 Физико-химические основы кислородной резки
- •21.3 Принципиальная схема лазерной обработки. Основные параметры лазерной сварки.
- •21.4 Оценка качества соединений при разрушающих испытаниях. Оценка дефектности соединения
- •Оценка дефектности соединения
- •21.5 72. Расчет потребности в оборудовании и производственных площадей сборочно-сварочных цехов
- •Выбор флюсов и сварочных проволок для сварки углеродистых, низколегированных и высоколегированных сталей и сплавов.
- •22.1 Флюсы для высоколегированных сталей
- •22.2 Газосварочное ацетилено-кислородное пламя, его структура и свойства. Основные стадии горения газа. Способы газотермической обработки и области их применения
- •22.3 Диффузионная сварка, ее сущность, принципиальная схеме установки для диффузионной сварки. Области применения диффузионной сварки
- •22.4 26. Металлографические методы контроля, химический анализ коррозионные испытания. Их задачи и области применения
- •22.5 Технология сварки сталей одного структурного класса, но различного уровня легирования.
- •23.1 31 Методы расчета химического состава металла при ручной дуговой и автоматической сварке под флюсом.
- •23.2 Технологические методы предупреждения и устранения сварочных напряжений и деформаций.
- •1. Термическая правка с местным нагревом
- •2. Термическая правка с общим нагревом (отжиг)
- •3. Холодная механическая правка
- •4. Термомеханическая правка
- •23.3 Диффузионная сварка металла
- •23.4 Испытания на растяжение, изгиб и сопротивление хрупкому разрушению. Их задачи, оцениваемые характеристики основного металла и сварных соединений. При испытании на растяжении
- •23.5 52.Особенности выбора режимов и технологии сварки аустенитных сталей. Термообработка сварных конструкций из аустенитных сталей.
- •24.1 Технологическая схема производства электродов с качественным покрытием.
- •24.4 Классификация методов неразрушающего и разрушающего контроля
- •24.5 Технология сварки меди и медных сплавов.
- •Склонность к порообразованию
- •Подготовка под сварку
- •Газовая сварка
- •Ручная сварка
- •Автоматическая сварка под флюсом
- •Электрошлаковая сварка меди и ее сплавов
- •Дуговая сварка в защитных газах
- •Другие способы сварки
- •25.2 Изменения теплофизических и физико-механических свойств материалов при нагреве
- •25.3Принципиальная схема сварки взрывом. Области ее применения. Свариваемые материалы.
- •25.4 Задачи и возможности статистического метода контроля качества.
- •25.5 Сварка алюминия и алюминиевых сплавов
- •Технология сварки
25.3Принципиальная схема сварки взрывом. Области ее применения. Свариваемые материалы.
Сварка взрывом - сравнительно новый перспективный технологический процесс, позволяющий получать биметаллические заготовки и изделия практически неограниченных размеров из разнообразных металлов и сплавов, в том числе тех, сварка которых другими способами затруднена.
Сварка взрывом - процесс получения соединения под действием энергии, выделяющейся при взрыве заряда взрывчатого вещества (ВВ). Принципиальная схема сварки взрывом приведена на рис. 3.49. Неподвижную пластину (основание) 4 и метаемую пластину (облицовку) 3 располагают под углом α = 2-16° на заданном расстоянии h = 2-3 мм от вершины угла. На метаемую пластину укладывают заряд ВВ 2. В вершине угла устанавливают детонатор 1. Сварка производится на опоре 5.
Рис. 3.49. Угловая схема сварки взрывом до начала (а) и на стадии взрыва (б)
В современных процессах металлообработки взрывом применяют заряды ВВ массой от нескольких граммов до сотен килограммов. Большая часть энергии, выделяющейся при взрыве, излучается в окружающую среду в виде ударных волн, сейсмических возмущений, разлета осколков. Воздушная ударная волна - наиболее опасный поражающий фактор взрыва. Поэтому сварку взрывом производят на полигонах (открытых и подземных), удаленных на значительные расстояния от жилых и промышленных объектов, и во взрывных камерах (см. рис. 3.50).
Рис. 3.50. Общий вид камеры для сварки взрывом
После инициирования взрыва детонация распространяется поза-ряду ВВ со скоростью D нескольких тысяч метров в секунду.
Под действием высокого давления расширяющихся продуктов взрыва метаемая пластина приобретает скорость νH порядка нескольких сотен метров в секунду и соударяется с неподвижной пластиной под углом у, который увеличивается с ростом отношения νн/D. В месте соударения возникает эффект кумуляции - из зоны соударения выбрасывается с очень высокой скоростью кумулятивная струя, состоящая из металла основания и облицовки. Эта струя обеспечивает очистку свариваемых поверхностей в момент, непосредственно предшествующий их соединению. Со свариваемых поверхностей при обычно применяемых режимах сварки удаляется слой металла суммарной толщиной 1-15 мкм.
Соударение метаемой пластины и основания сопровождается пластической деформацией, вызывающей местный нагрев поверхностных слоев металла. В результате деформации и нагрева развиваются физический контакт, активация свариваемых поверхностей и образуются соединения.
Исследование пластической деформации в зоне соударения по искажению координатной сетки показало, что прочное соединение образуется только там, где соударение сопровождается взаимным сдвигом поверхностных слоев метаемой пластины и основания. Там же, где взаимный сдвиг отсутствовал, и в частности в зоне инициирования взрыва, прочного соединения не было получено. Очевидно, что «лобовой» удар метаемой пластины в основание без тангенциальной составляющей скорости и сдвиговой деформации в зоне соединения не приводит к сварке.
Соединяемые поверхности перед сваркой должны быть чистыми (в особенности по органическим загрязнениям), так как ни действие кумулятивной струи, ни вакуумная сдвиговая деформация при соударении полностью не исключают вредного влияния таких загрязнений.
Сварка взрывом дает возможность сваривать практически любые металлы. Однако последующий нагрев сваренных заготовок может вызвать интенсивную диффузию в зоне соединения и образование интерметаллидных фаз. Последнее приводит к снижению прочности соединения, которая при достаточно высоких температурах может снизиться практически до нуля. Для предотвращения этих явлений сварку взрывом проводят через промежуточные прослойки из металлов, не образующих химических соединений со свариваемыми материалами. Например, при сварке титана со сталью используют в качестве промежуточного материала ниобий, ванадий или тантал.
Сварка взрывом применяется для плакирования стержней и труб, внутренних поверхностей цилиндров и цилиндрических изделий (рис. 3.51). При плакировании стержней трубу 1 (рис. 3.52, а) устанавливают с зазором на стержень 2. Внутреннюю поверхность трубы и наружную поверхность стержня механически обрабатывают и обезжиривают.
Рис. 3.51. Плакированный взрывом подпятник пресса
На наружную поверхность трубы помещают заряд взрывчатого вещества 3, инициирование которого производят по всему сечению одновременно так, чтобы взрыв распределялся по заряду нормально его оси. Для создания такого фронта используют конус из ВВ с детонатором 4 в его вершине. Для изоляции зазора от продуктов детонации и центрирования трубы относительно стержня в верхней ее части устанавливается металлический конус 5. В случае плакирования трубных заготовок 6 внутрь их устанавливается стержень 2. Толщина плакирующей трубы может быть от 0,5 до 15 мм, а диаметр теоретически не ограничивается.
При плакировании внутренних поверхностей используется схема, показанная на рис. 3.52, б. Она предусматривает размещение плакируемой трубы 1 в массивной матрице 2. Внутрь трубы 1 с зазором устанавливают плакирующую трубу 3 с зарядом ВВ 4, инициируемого детонатором 5. Для внутреннего плакирования крупногабаритных труб и цилиндрических изделий ответственного назначения применяют вместо массивной матрицы 2 дополнительный заряд, расположенный на наружной поверхности плакируемого цилиндра и взрываемый одновременно с внутренним зарядом.
Рис. 3.52. Схема плакирования взрывом стержня (а) и внутренней поверхности трубы (б)
