- •3.1 Основные расчетные схемы нагрева металла сварочными
- •3.3 Способы получения различных внешних характеристик источников сварочного тока
- •3.4 Обоснование норм допустимости дефектов. Система оценим дефектности.
- •Выбор метода обоснования норм допустимости дефектов в зависимости от типов и видов дефектов
- •3.5 61 Погрешности сборки и их учет в размерных цепях. Оптимизация сборочной размерной цепи. Правило согласования допусков.Doc
- •4.1 3 Взаимодействие металла с газами при сварке плавлением. Причины образования пор и неметаллических включений в сварных швах и наплавленном металле.
- •4.2 Технология сварки высокохромистых сталей мартенситного и ферритно-мартенситного класса.
- •4.3 Единая система обозначения и классификация источников питания для сварки
- •4.4 Физические основы узд. Классификация методов узд и их особенности
- •4.5 83. Сущность компенсации погрешности сборки за счет смещения деталей
- •5.1 4. Взаимодействие расплавленного металла с газовой и шлаковой фазой при автоматической сварке под флюсом
- •5.2 93 Теплоустойчивые стали, их особенности и свариваемость. Технология сварки плавлением теплоустойчивых сталей, ее основные особенности
- •5.3 Способы регулирования режимов в сварочных трансформаторах.
- •5.4 Методика и технология узк. Основные параметры узк.
- •5.5 Определение припуска на механическую обработку сварных конструкций. Количество стадий механической обработки.
- •6.2 37. Общие принципы расчета резервуаров
- •6.3 80. Способы регулирования режимов в сварочных выпрямителях
- •Виды сварочных выпрямителей
- •6.4 50 Основные характеристики дефектов, измеряемые узд.
- •6.5 67 Принципы взаимного базирования деталей, узлов и оснастки
- •7.1 74 Рафинирование расплавленного металла при сварке и наплавке.
- •7.2 36 Общие принципы расчета балок и стоек.
- •7.3 47 Основные схемы электрической контактной сварки.
- •7.4 Технология контроля стыковых и тавровых сварных соединений методами узд-к
- •7.5 Сущность сборки, требования к технологическому процессу сборки, выбор последовательности сборки сварной конструкции из деталей. Способы достижения точности размеров при сборке.Docx
- •Методы достижения необходимой точности при сборке
- •8.1 42 Основные закономерности процесса кристаллизации расплавленного металла в сварочной ванне. Понятие о первичной и вторичной кристаллизации металлов. Ликвация примесей и ее причины
- •8.2 39 . Общие принципы расчета трубопроводов
- •8.3 1 Сущность процесса контактной точечной и рельефной связки. Области их применения.
- •8.4 Радиационные методы контроля, их классификация. Основные единицы измерения
- •8.5 Борьба со сварочными деформациями с помощью сварочных приспособлений. Крепление деталей и узлов с деформированием в сборочно-сварочной оснастке.
- •9.1 Деформирование металла при высоких температурах сварки
- •9.2 38 Общие принципы расчета сварных ферм
- •9.3 Сущность процесса контактной шовной сварки.
- •Сущность процесса
- •9.4 Источники тормозного излучения: рентгеновские аппараты и ускорители
- •9.5 Правка сварных конструкций перед их термо и мехобработкой.
- •10.1 Горячие трещины при сварке. Причины их образования и меры борьбы
- •10.2 30 Методы повышения эффективности автоматической сварки под слоем флюса.
- •10.3 Сущность процессов контактной стыковой сварки. Сущность процесса
- •10.5 Основные технологические требования, предъявляемые к сборочно-сварочной оснастке. Порядок проектирования специальной оснастки. Необходимость и рентабельность ее использования.
- •11.1 Холодные трещины при сварке. Влияние различных факторов на их образование. Меры борьбы с образованием холодных трещин при сварке.
- •11.2 Расчет сварных конструкций по допускаемым напряжениям и несущей способности.
- •11.3 Сущность жестких и мягких режимов контактной сварки. Области их применения.
- •11.4 Физические основы радиационного метода контроля. Основные параметры радиационного контроля.
- •11.5 32 Механизация и автоматизация сварочного производства в условиях самостоятельности предприятий и повышения требований к качеству продукции.
- •12.1 Характерные зоны металла в сварных соединениях. Структурные превращения в металлах в зоне
- •12.2 44 Основные принципы проектирования сварных конструкций и технологии их изготовления.
- •12.3 Циклограммы работы машин контактной сварки (точечной, шовной, стыковой — сопротивлением и оплавлением)
- •12.4 27. Методика и техника радиоскопии. Биологическое действие ионизирующего излучения. Основные санитарные нормы и защита от излучения.
- •13.1 95.Технологическая свариваемость сталей и других металлов и сплавов, и факторы ее определяющие. Методы испытания материалов на свариваемость и определение свойств сварочных материалов.
- •13.2 75. Сварка неплавящемся электродом в среде инертных газов. Разновидности способов и области их применения.
- •13.3 Схема однофазной конденсаторной контактной машины:
- •14.1 40. Общий характер термодеформационного воздействия на металл при сварке и его последствия
- •14.3 Особенности технологии контактной сварки (точечной и шовной) низко- и среднеуглеродистых сталей.
- •6.2. Содержание процесса освоения новой продукции и принципы его организации
- •6.3. Организация перехода на выпуск новой продукции
- •6.4. Планирование показателей производства новых изделий
- •15.1 Электрическая дуга как сварочный источник тепла.
- •12.5 Сущность процесса сварки под флюсом.
- •15.3 55 Особенности технологии контактной сварки.
- •Сварка низко- и среднелегированных закаливающихся сталей.
- •15.4 Сущность процесса магнитографической дефектоскопии. Области ее применения.
- •15.5 Технологичность сварных конструкций. Связь между технологичностью и уровнем механизации и автоматизации сборочно-сварочного производства.
- •16.1 Влияние магнитных полей как собственных, так и посторонних (продольных и поперечных) на поведение дуги и жидкого металла сварочной ванны. Методы борьбы с нестабильным горением дуги.
- •16.2 53. Особенности сварки чугуна. Технология горячей, полугорячей и холодной сварки чугуна. Материалы, применяемые при сварке чугуна.
- •Горячая сварка
- •Холодная сварка
- •16.3 Технологические особенности контактной сварки (точечной и шовной) высоколегированных и жаропрочных сталей.
- •16.4 Физическая сущность и классификация магнитных
- •16.5 94. Технические условия
- •Показатели технологичности сварной конструкции.
- •17.1 49. Основные типовые схемы контактной сварки, область их применения.
- •Типовые регуляторы времени и циклов сварки
- •Автоматическое регулирование процессов точечной сварки.
- •Основные параметры контактной сварки и их влияния на качество сварных соединений.
- •17.2 78. Способы легирования металла сварных швов и наплавленного металла. Способы наплавки поверхностей деталей металлом с особыми свойствами, их особенности и область применения.
- •17.3 Технологические особенности контактной сварки (точечной и шовной) алюминия и его сплавов.
- •17.4 29 Методика контроля вихревыми токами и феррорезонансными методам.
- •17.5 Виды технологических процессов заготовительного производства.
- •18.1 10. Классификация сварочных материалов
- •18.2 Технология ручной дуговой сварки.
- •Техника выполнения шва и режим сварки зажигание сварочной дуги
- •Положение и перемещение электрода при сварке
- •Порядок выполнения швов
- •Подбор силы тока и диаметра электрода
- •Достоинства способа:
- •Недостатки способа:
- •Рациональные области применения:
- •18.3 Схема установки для элс. Принцип ее работы.
- •Основные параметры режима электронно-лучевой сварки (таблица 1):
- •Сварка электронным лучом имеет значительные преимущества:
- •Недостатки электронно-лучевой сварки:
- •18.4 Пневматические и гидравлические методы течеискания. Испытания керосином и пенетрантами.
- •18.5 33 Механизация и автоматизация термической резки. Технология раскроя деталей из листового и профильного проката
- •Технология раскроя
- •19.2 Теоретические основы пайки металлов. Физико-химические процессы образования паяного соединения. Способы пайки. Технология пайки. Назначение припоев, флюсов и газовых сред.
- •Достоинства пайки:
- •Классификация пайки Виды капиллярной пайки:
- •Виды некапиллярной пайки:
- •Классификация спаев:
- •Конструкционные параметры паяных соединений (рисунок 2)
- •Припои и паяльные смеси. Требования предъявляемые к ним:
- •Классификация припоев:
- •Классификация флюсов:
- •Механизмы флюсования:
- •Состав флюсов:
- •Флюсы подразделяются на 4 группы:
- •Газовые среды:
- •19.3 57 Особенности формирования сварных швов при элс.
- •19.4 51. Основы, классификация и чувствительность физических методов течеискания
- •19.5 Влияние технологии и последовательности сборки на механизацию и автоматизацию сборочных и сварочных операций. Механизация сборочно-сварочных работ
- •20.1 Сварочные флюсы, их классификация, технические требования, предъявляемые к флюсам для автоматической электродуговой и электрошлаковой сварки и наплавки. Технологические схемы их производства.
- •77) Способы автоматической сварки под флюсом, влияние технологических факторов и режимов сварки на форму и размеры сварных швов. Пути повышения производительности процесса.
- •Достоинства способа:
- •Недостатки способа:
- •Области применения:
- •Пути повышения производительности:
- •Зависимость формы, размеров и состава металла шва от режима сварки и технологических факторов
- •20.2 Сущность плазменной обработки материалов.
- •20.3 43 Основные параметры элс и их влияние на формирование шва.
- •Параметры и показатели элс
- •Основные параметры режима электронно-лучевой сварки (таблица 1):
- •Техника электронно-лучевой сварки
- •Камеры и вакуум для электронно-лучевой сварки
- •Сварка электронным лучом имеет значительные преимущества:
- •20.4 Газоэлектрические течеискатели.
- •20.5 68.Проектирование сборочно — сварочных цехов. Исходные данные. Экономические показатели проектирования сварочных цехов и участков.
- •21.1 Влияние сварочных материалов на свойства сварных соединений из сталей различных структурных классов и легирования.
- •21.2 Физико-химические основы кислородной резки
- •21.3 Принципиальная схема лазерной обработки. Основные параметры лазерной сварки.
- •21.4 Оценка качества соединений при разрушающих испытаниях. Оценка дефектности соединения
- •Оценка дефектности соединения
- •21.5 72. Расчет потребности в оборудовании и производственных площадей сборочно-сварочных цехов
- •Выбор флюсов и сварочных проволок для сварки углеродистых, низколегированных и высоколегированных сталей и сплавов.
- •22.1 Флюсы для высоколегированных сталей
- •22.2 Газосварочное ацетилено-кислородное пламя, его структура и свойства. Основные стадии горения газа. Способы газотермической обработки и области их применения
- •22.3 Диффузионная сварка, ее сущность, принципиальная схеме установки для диффузионной сварки. Области применения диффузионной сварки
- •22.4 26. Металлографические методы контроля, химический анализ коррозионные испытания. Их задачи и области применения
- •22.5 Технология сварки сталей одного структурного класса, но различного уровня легирования.
- •23.1 31 Методы расчета химического состава металла при ручной дуговой и автоматической сварке под флюсом.
- •23.2 Технологические методы предупреждения и устранения сварочных напряжений и деформаций.
- •1. Термическая правка с местным нагревом
- •2. Термическая правка с общим нагревом (отжиг)
- •3. Холодная механическая правка
- •4. Термомеханическая правка
- •23.3 Диффузионная сварка металла
- •23.4 Испытания на растяжение, изгиб и сопротивление хрупкому разрушению. Их задачи, оцениваемые характеристики основного металла и сварных соединений. При испытании на растяжении
- •23.5 52.Особенности выбора режимов и технологии сварки аустенитных сталей. Термообработка сварных конструкций из аустенитных сталей.
- •24.1 Технологическая схема производства электродов с качественным покрытием.
- •24.4 Классификация методов неразрушающего и разрушающего контроля
- •24.5 Технология сварки меди и медных сплавов.
- •Склонность к порообразованию
- •Подготовка под сварку
- •Газовая сварка
- •Ручная сварка
- •Автоматическая сварка под флюсом
- •Электрошлаковая сварка меди и ее сплавов
- •Дуговая сварка в защитных газах
- •Другие способы сварки
- •25.2 Изменения теплофизических и физико-механических свойств материалов при нагреве
- •25.3Принципиальная схема сварки взрывом. Области ее применения. Свариваемые материалы.
- •25.4 Задачи и возможности статистического метода контроля качества.
- •25.5 Сварка алюминия и алюминиевых сплавов
- •Технология сварки
23.5 52.Особенности выбора режимов и технологии сварки аустенитных сталей. Термообработка сварных конструкций из аустенитных сталей.
24.1 Технологическая схема производства электродов с качественным покрытием.
В зависимости от толщины покрытия делятся на качественные (толстые) и стабилизирующие (тонкие). Качественное покрытие имеет толщину 0,5—2,5 мм и составляет 20—40 % массы электродного стержня, а с железным порошком — соответственно 3,5 мм и 50 %. Электроды с качественным покрытием используют для получения металла шва высокого качества, не уступающего по своим свойствам основному металлу. Электроды со стабилизирующим покрытием (толщина покрытия 0,1—0,3 мм) повышают устойчивость горения дуги, не влияя почти на качество наплавляемого металла. Поэтому электроды с таким покрытием в настоящее время почти не применяются.
Стальные электроды изготовляют в соответствии с ГОСТ 9466-75,
ГОСТ 9467-75, ГОСТ 100051-75. В ГОСТ 9466-75 электроды подразделяются на группы в зависимости от свариваемых металлов:
У - углеродистых и низкоуглеродистых конструкционных сталей;
Л - легированных конструкционных сталей;
Г - легированных теплоустойчивых сталей;
В - высоколегированных сталей с особыми свойствами.
Общее назначение электродных покрытий – обеспечивание стабильности горения сварочной дуги и получение металла шва с заранее заданными свойствами (прочность, пластичность, ударная
вязскость, стойкость против коррозии, и др.). Стабильность горения сварочной дуги достигается снижением потенциала ионизации воздушного промежутка между электродом и свариваемой деталью. Покрытия выполняют защитную функцию, шлаковая защита служит для защиты
расплевленного металла шва от воздействия кислорода и азота воздуха путем образования шлаковых оболочек на поверхности капель электродного металла, переходящих через
дуговой промежуток, и для образования шлакового покрова на поверхности расплавленного металла. Шлаковое покрытие уменьшает скорость охлаждения и затвердевания металла шва,
способствуя выходу из него газовых и неметаллических включений. Шлакообразующими компонентами являются; титановый концентрат, марганцевая руда, каолин, мрамор, мел, кварцевый песок, доломит, полевой шпати др. Легирование металла шва производится для придания специальных свойств наплавленному металлу. Наиболее часто применяются такие легирующие компоненты как хром, никель, млибден, вольфрам, марганец, титан и др. Легирование металла иногда производится специальной проволокой, содержащей нужные элементы. Чаще металл шва легируют введением легирующих компонентов в состав покрытия электрода. Легирующие компоненты - ферросплавы, иногда чистые металлы. Для повышения проиводительности, т.е. для увеличения количества наплавляемого металла в единицу времени, в электродные покрытия иногда вводят железный порошок. Введеный в покрытие железный порошок улучшает технологические свойства электродов (облегчает повторное зажигание дуги, уменьшает скорость охлаждения наплавленного металла, что благоприятно сказывается при сварке в условиях низких температур) Для закрепления покрытия на стержне используют связывающие компоненты, жидкое стекло имеет также стабилизирующие свойства. При наличии в составе покрытия более 20% железного порошка, к обозначению следует добавить букву Ж.
По видам покрытия электродов подразделяются:
А - с кислым покрытием, содержащим окиси железа, марганца, кремния, иногда титана;
Б - с основным покрытием, имеющим в качестве основы фтористый кальций и карбонад кальция. ( Сварку электродами с основным покрытием осуществляют на постоянном токе и обратной полярности. Вследствие малой склонности металла к образованию кристаллизационных и холодных трещин, электроды с этим покрытием используют для сварки больших сечений );
Ц - с целлюлозным покрытием, основные компоненты которых - целлюлоза, мука другие органические составы, создающие газовую защиту дуги и образующие при плавлении тонкий шлак. ( Электроды с целлюлозным покрытием применяют, как правило, для сварки стали малой толщины);
Р - с рутиловым покрытием, основной компонент - рутил. Для шлаковой и газовой защиты покрытия этого типа вводят соответствующие минеральные и органические компоненты.
При сварке на постоянном и переменном токе разбрызгивание металла незначительно. Устойчивость горения дуги, формирование швов во всех пространственных положениях хорошее;
П - прочие виды покрытий. При покрытии смешанного вида используют соответствующее
условное обозначение.
2.1 Электроды для сварки конструкционных и низколегированных сталей
Для сталей обычной прочности предназначены электроды:
Э38, Э42, Э46, Э50, Э42А, Э46А, Э50А, Э55 и Э60.
Для констукционных сталей повышенной прочности - электроды:
Э70, Э85, Э100, Э125, Э150. Механические свойства швов и сварных
соединений при применении электродов для сварки конструкционных сталей должны соответствовать определенным нормам.
2.2 Электроды для сварки легированных теплоустойчивых сталей.
Эти стали сваривают электродами девяти типов по ГОСТ 9467-75 которые классифицируют по механическим свойствам к химическому составу наплавленного металла. Буквы, стоящие после буквы Э, показывают гарантированное содержание легирующих элементов в наплавленном металле.
2.3 Электроды для сварки высоколегирванных сталей с особыми свойствами.
Для сварки коррозионно - стойких, жаропрочных и жаростойких высоколегированных сталей мартенситного, мартенситно - ферритного, ферритного, аустенитно - ферритного и аустенитного
классов существует 49 типов электродов.
Производство электродов для ручной дуговой сварки
В электродном производстве проволоку, правят, разрезают по длинне на прутки, и очищают от различных поверхностных загрязнений.
Стабильность покрытия должна обеспечиваться его достаточно одинаковым количеством, на единице длинны электрода и равномерностью состава в связи с тем, что покрытие представляет
собой смесь различных порошкообразных материалов, скрепленных между собой и со стержнем склеивающим связующих. Необходимо стремиться, чтобы замес покрытия в момент нанесения на стержень был достаточно однородным.
Температура плавления шлака должна быть не очень высокой, а температура плавления его составляющих в поверхности может быть более высокой. Относительно легкоплавким является шлак из смесей, растворов, комплексных соединений и эвтектик, их образование осуществляется легче и быстрее при контакте элементарных окислов по значительной поверхности и малом объеме малой частицы. При производственных методах измельчения материалов обеспечить одинаковый размер огромного количества частиц не удается (всегда получается комплекс частиц различного гранулометрического состава). Обычно применяемые размеры частиц материалов электродных покрытий проверяются ситами с размерами по ГОСТу 3484-53 от 0,45 (т.е. 252 отверстия и 1 см при размере ячейки 0,45мм) до 007.
Порошкообразные измельченные материалы получаются в электродных цехах переработкой исходной продуктов, поступающих в основном в виде кусков того или иного размера. В качество связующих в электродном производстве являются селикатные растворы - натриевые, реже калиевые жидкие стекла. В электродном производстве в зависимости от метода нанесения покрытия на стержни - окунанием или опрессовкой, жидкие стекла применяются различной плотности.
Жидкие стекла характеризуются модулем, плотностью, вязскостью и клеющей способностью. На вязскость очень значительно влияет температура жидкого стекла. Весьма важной характеристикой жидкого стекла для оценки состава электродных покрытий является величина сухого остатка.
Нанесение массы покрытия на стержни осуществляется окунанием или опрессовкой. Для электродов общего назначения, а также специальных, но применяемых достаточно широко, изготовляемых массовым методом или большими партиями, покрытия наносят опрессовкой под большим давлением.
Основные показатели качества нанесения покрытия - равномерность его расположения по длине, количество (толщина) покрытия, концентричность расположения относительно стержня -
определяются и качеством обмазочной массы, и режимом нанесения покрытия. Наилучшие условия для получения покрытия, расположенного концентрично стержню, достигаются при соосном движении в электрообмазочном агрегате и стержней, и обмазочной массы, выдавливаемой прессом. В связи с большими трудностями создания такой конструкции прессов обычно канал для подачи массы в обмазочную головку изменяет ее приближение с максимальным приближением к касательной по отношению к подаваемым в головку стержня. Высокие давления при этом придают такую плотность покрытию в момент выхода электрода из пресса, что перетекание массы при сушке исключается и сушка происходит в горизонтальном положении. В процессе сушки и прокалки диаметр электрода с покрытием несколько увеличивается - покрытие распухает. Так, для покрытий типа УОНИ-13/45 диаметр электрода увеличивается при сушке на 0,1-0,2 мм. по сравнению с его диаметром в момент его выхода их пресса. Сушка и прокалка электродов должны удалить воду из покрытия. При этом следует учитывать это воды в покрытии много. Сушка может быть естественная, т.е. при комнатной температуре, и ускоренная, в различных печах.
При прокалке осуществляется дальнейшее удаление влаги и иногда кристаллизационной воды. Температура прокалка ограничивается как отдельными составляющими покрытия, например
при наличии в покрытии органических соединений - температурой их распада, так и отсутствием откалыванием покрытия от стержня вследствии различия уоэффициента их теплового расширения. Например, покрытия типа УОНИ-13/45 на стержняи из низкоуглеродистой или низколегированной проволоки нельзя прокалывать при температуре выше 500-525`C.
Методы уменьшения сварочных напряжений, деформаций и перемещений
Сварочные деформации вследствие изменения размеров и формы конструкций существенно затрудняют их сборку, ухудшают внешний вид и эксплуатационные качества. Сварочные напряжения снижают сопротивляемость сварных конструкций разрушению, особенно при воздействии циклических нагрузок и агрессивных сред. Поэтому применяют различные способы уменьшения или устранения сварочных деформаций И напряжений.
Мероприятия по уменьшению деформаций и напряжений могут осуществляться на разных стадиях изготовления конструкции: до сварки — на стадии проектирования конструкции и технологии производства, во время и после сварки.
Мероприятия, применяемые преимущественно для снятия сварочных напряжений, влияют на деформации и, наоборот, мероприятия, применяемые преимущественно для уменьшения деформаций, влияют на величину напряжений. Рассмотрим основные способы уменьшения сварочных деформаций и напряжений.
Уменьшение остаточных сварочных напряжений. Способы уменьшения остаточных напряжений делят на термические, механические и термомеханические. Наиболее эффективно снятие остаточных напряжений способами, осуществляемыми после сварки.
К термическим способам „относят предварительный и сопутствующий подогрев во время сварки и высокий отпуск после сварки.
Подогрев снижает предел текучести металла в момент сварки, что и влияет на формирование и величину остаточных напряжений. Снижение напряжений при низкотемпературном подогреве (до 200—250 °С) составляет ориентировочно не более 30—40%.
Общий высокий отпуск является наиболее эффективным методом уменьшения остаточных напряжений, так как позволяет снизить напряжения на 85—90% от исходных значений и одновременно улучшить пластические свойства сварных соединений. Высокий отпуск состоит из нагрева (для стали до температуры около 650 °С), вьщержки (2—4 ч) и медленного охлаждения.
Местный отпуск применяют для снятия пиковых величин остаточных напряжений и восстановления пластических свойств сварных соединений. При местном отпуске нагревают до заданной температуры лишь часть конструкции.
Рис. 1. Распределение остаточных сварочных напряжений в стыковом соединении
Поэлементный отпуск состоит в том, что при монтаже крупного баритных конструкций подвергают отпуску отдельные узлы кон струкции, включающие зоны и элементы, где отпуск необходим а затем эти узлы сваривают между собой чаще всего встык с полным проваром без концентраторов. Обычно в этих соединениях предусматривают снятие напряжений местными способами (термическими или механическими).
Механические способы (проковка, прокатка, вибрация, взрывная обработка, ультразвуковая обработка, приложение нагрузки к сварным соединениям) основаны на создании пластической деформации металла сварных соединений, вследствие чего происходит снижение растягивающих остаточных напряжений.
Металл проковывают непосредственно после сварки по горячему металлу или после его остывания. Основное преимущество этого метода заключается в простоте применяемого оборудования, универсальности и оперативности.
Прокатка обеспечивает более равномерную пластическую деформацию металла по сравнению с проковкой и в основном предназначена для устранения остаточных деформаций.
Приложение нагрузки к сварным соединениям осуществляют растяжением или изгибом элементов. Суммирование остаточных и приложенных напряжений вызывает пластические деформации удлинения и после снятия нагрузки снижение максимальных напряжений.
Наряду с рассмотренными механическими методами для снятия напряжений начинают использовать вибрацию, ультразвуковую и взрывную обработку.
Термомеханические способы основаны на одновременном протекании тепловых и механических процессов.
Способы уменьшения сварочных деформаций. Все мероприятия по уменьшению деформаций можно разделить на три группы в зач висимости от того, применяют ли их до сварки, в процессе сварки или после нее.
Мероприятия, применяемые до сварки.
1. Рациональное конструирование сварного изделия, которое включает: – уменьшение количества наплавленного металла и соответственно количества вводимого при сварке тепла за счет уменьшения сварных швов и их сечений; – избежание скоплений и перекрещиваний швов; – симметричное расположение швов для уравновешивания деформаций; – симметричное расположение ребер жесткости, накладок, косынок и т. д. и их минимальное использование.
2. На стадии разработки технологии целесообразно предусматривать: – размеры и форму заготовок с учетом величины возникающих прй сварке усадок; – предварительную деформацию заготовок, которая была бы противоположной ожидаемой сварочной деформации; – правильный выбор вида сварки, учитывая, что деформации при ручной сварке, как правило, больше, чем при автоматической, а деформации при сварке под флюсом больше, чем при сварке в углекислом газе.
Мероприятия, применяемые в процессе сварки:- – снижение погонной энергии при назначении более экономичных режимов; – искусственное охлаждение зоны сварки, например, водой, водо-охлаждаемыми медными накладками и т. д. для уменьшения зоны нагрева и соответственно сварочных деформаций; – закрепление свариваемых изделий в жестких приспособлениях; применение многослойных швов вместо однослойного, проковка швов после каждого прохода; – рациональная последовательность сварки для уравновешивания деформаций, применение обратноступенчатого способа сварки, заключающегося в том, что всю длину шва разбирают на отдельные ступени и сварку каждой ступени выполняют в направлении, обратном общему направлению сварки.
Мероприятия, применяемые после сварки: механическая правка сварных изделий для создания пластических деформаций, обратных сварочным, путем растяжения, изгиба, местного деформирования проковкой, прокаткой роликами, осадкой металла по толщине под прессом и др.; – тепловая правка местным нагревом. Расширяющийся при местном нагреве металл осаживается прилегающим холодным металлом, поэтому после охлаждения размеры нагретого участка уменьшаются, что приводит к устранению местных деформаций (хлопунов, выпучин и т. д.); – высокий отпуск деталей в зажимных приспособлениях.
24.3 Принципиальная схема холодной сварки. Области применения холодной сварки и свариваемые материалы. Типы сварных соединений, выполняемые холодной сваркой.
Холодная сварка - способ соединения деталей при комнатной (и даже отрицательной) температуре, без нагрева внешними источниками. Сварка осуществляется с помощью специальных устройств, вызывающих одновременную направленную деформацию предварительно очищенных поверхностей и нарастающее напряженное состояние, при котором образуется монолитное высокопрочное соединение. Холодной сваркой можно соединять, например, алюминий, медь, свинец, цинк, никель, серебро, кадмий, железо. Особенно велико преимущество холодной сварки перед другими способами сварки при соединении разнородных металлов, чувствительных к нагреву или образующих интерметаллиды.
Холодная сварка - сложный физико-химический процесс, протекающий только в условиях пластической деформации. Без пластической деформации в обычных атмосферных условиях, даже прилагая любые удельные сжимающие давления к соединяемым заготовкам, практически невозможно получить полноценное монолитное соединение. Роль деформации при холодной сварке заключается в предельном утонении или удалении слоя оксидов, в сближении свариваемых поверхностей до расстояния, соизмеримого с параметром кристаллической решетки, а также в повышении энергетического уровня поверхностных атомов, обеспечивающем возможность образования химических связей.
Качество сварного соединения определяется исходным физико-химическим состоянием контактных поверхностей, давлением (усилием сжатия) и степенью деформации при сварке. Оно также зависит от схемы деформации и способа приложения давления (статического, вибрационного). В зависимости от схемы пластической деформации заготовок сварка может быть точечной, шовной и стыковой.
Точечная сварка - наиболее простой и распространенный способ холодной сварки. Ее применение рационально для соединения алюминия, алюминия с медью, армирования алюминия медью. Ею можно заменить трудоемкую клепку и контактную точечную сварку.
При холодной точечной сварке (рис. 3.44, а) зачищенные детали 1 устанавливают внахлестку между пуансонами 3, имеющими рабочую часть 2 и опорную поверхность 4. При вдавливании пуансонов сжимающим усилием Р происходит деформация заготовок и формирование сварного соединения. Опорная поверхность пуансонов создает дополнительное напряженное состояние в конечный момент сварки, ограничивает глубину погружения пуансонов в металл и уменьшает коробление изделия.
Прочность точек может быть повышена на 10-20 % при сварке по схеме (рис. 3.45, а).
Свариваемые детали 1 предварительно сжимаются прижимами 2 или одновременно с вдавливанием пуансона 3. Наличие зоны обжатия вокруг вдавливаемого пуансона уменьшает коробление детали, повышает напряженное состояние в зоне сварки, что приводит к периферийному провару за площадью отпечатка пуансона. Но при этом возникают технические затруднения, связанные с созданием двух высоких давлений на малой поверхности и устранением затекания металла между пуансоном и прижимом. Этот способ позволяет сваривать малопластичные материалы.
Рис. 3.44. Схема холодной точечной сварки (а), геометрия сварного соединения (б) и формы пуансонов (в)
Рис. 3.45. Схема (а) и приспособление (б) для холодной точечной сварки с предварительным обжатием
Ввиду простоты способа точечной холодной сварки специальные машины для ее выполнения большого развития не получили. Сварку успешно выполняют на самых различных серийных прессах с применением кондукторов, надежно фиксирующих свариваемые заготовки, чтобы исключить их коробление (рис. 3.45, б).
На рис. 3.46 (а) показана установка холодной сварки давлением, разработанная в Институте сварки (Россия). С помощью данной установки успешно соединяют алюминий с медью в электротехнике, энергетике, цветной металлургии; соединяют также медные контакты проводов, изготавливают кольца из меди и алюминия (рис. 3.46, б).
Шовная (роликовая) сварка характеризуется непрерывностью монолитного соединения. По механической схеме эта сварка аналогична холодной сварке прямоугольными пуансонами (рис. 3.47).
Рис. 3.46. Установка для холодной сварки (а) и примеры сваренных деталей (б)
Собранные заготовки 1 устанавливаются между роликами 2 и сжимаются ими до полного погружения рабочих выступов 3 в металл. Затем ролики приводятся во вращение. Перемещая изделие и последовательно внедряясь рабочими выступами в металл, они вызывают его интенсивную деформацию, в результате которой образуется непрерывное монолитное соединение - шов. Шовная сварка бывает двусторонняя, односторонняя и несимметричная. Двусторонняя сварка выполняется одинаковыми роликами. При односторонней сварке один ролик имеет выступ, высота которого равна сумме выступов при двусторонней сварке, а второй является опорным, без рабочего выступа. При несимметричной сварке ролики имеют различные по размерам, а иногда и по форме рабочие выступы.
Односторонняя роликовая сварка чаще применяется для сварки разнородных металлов, сильно отличающихся твердостью. Рабочая часть ролика вдавливается в более твердый металл. Такая сварка при прочих равных условиях обеспечивает более прочные швы и при сварке однородных металлов.
При роликовой сварке металл свободно течет вдоль оси шва, что затрудняет создание достаточного напряженного состояния металла в зоне соединения. Поэтому для достижения провара требуется большая пластическая деформация (на 2-6 %), чем при точечной сварке. Напряженное состояние в зоне роликовой сварки можно повысить, увеличивая диаметр роликов. Обычно диаметр ролика близок к 50δ, ширина рабочего выступа (1-1,5)δ, высота (0,8-0,9)δ, а ширина опорной части ролика, ограничивающая деформации, в 2-3 раза больше ширины рабочего выступа. Роликовая сварка алюминия толщиной 1,0 мм при свариваемости 27 % выполняется со скоростью до 8-12 м/мин.
Для роликовой сварки применяются металлорежущие станки, например фрезерные; при сварке тонких пластичных металлов - ручные настольные станки.
Рис. 3.47. Схема холодной шовной сварки: 1 - детали; 2 - ролики; 3 - выступы
Одна из первых схем холодной стыковой сварки металлов, которая не потеряла практического значения до сих пор, приведена на рис. 3.48. Эта схема разработана К. К. Хреновым и Г. П. Сахацким. В корпусе 1 имеются гнездо для неподвижного конусного зажима 2 и направляющие для подвижного корпуса 3, в котором также расположен конусный зажим. После предварительной зачистки торцов детали 4 устанавливают в зажимы 2, которые имеют формирующие части с режущими кромками 5 и упором 6. Осадочное усилие прикладывается к ползуну 3, при его перемещении сжимаются торцы деталей и зажимаются с помощью конусов. В процессе осадки углубления 7 заполняются металлом раньше, чем встречаются опорные части 6. Поэтому, когда встречаются опорные части, в зоне сварки создается достаточное напряженное состояние. В стыке происходит провар, а остаток вытекающего металла отрезается кромками 5. В зависимости от расположения режущих кромок соединение может быть с усилением или без усиления.
Схема стыковой сварки, предложенная С. Б. Айбиндером, приведена на рис. 3.48, б.
Рис. 3.48. Схемы холодной стыковой сварки
