- •3.1 Основные расчетные схемы нагрева металла сварочными
- •3.3 Способы получения различных внешних характеристик источников сварочного тока
- •3.4 Обоснование норм допустимости дефектов. Система оценим дефектности.
- •Выбор метода обоснования норм допустимости дефектов в зависимости от типов и видов дефектов
- •3.5 61 Погрешности сборки и их учет в размерных цепях. Оптимизация сборочной размерной цепи. Правило согласования допусков.Doc
- •4.1 3 Взаимодействие металла с газами при сварке плавлением. Причины образования пор и неметаллических включений в сварных швах и наплавленном металле.
- •4.2 Технология сварки высокохромистых сталей мартенситного и ферритно-мартенситного класса.
- •4.3 Единая система обозначения и классификация источников питания для сварки
- •4.4 Физические основы узд. Классификация методов узд и их особенности
- •4.5 83. Сущность компенсации погрешности сборки за счет смещения деталей
- •5.1 4. Взаимодействие расплавленного металла с газовой и шлаковой фазой при автоматической сварке под флюсом
- •5.2 93 Теплоустойчивые стали, их особенности и свариваемость. Технология сварки плавлением теплоустойчивых сталей, ее основные особенности
- •5.3 Способы регулирования режимов в сварочных трансформаторах.
- •5.4 Методика и технология узк. Основные параметры узк.
- •5.5 Определение припуска на механическую обработку сварных конструкций. Количество стадий механической обработки.
- •6.2 37. Общие принципы расчета резервуаров
- •6.3 80. Способы регулирования режимов в сварочных выпрямителях
- •Виды сварочных выпрямителей
- •6.4 50 Основные характеристики дефектов, измеряемые узд.
- •6.5 67 Принципы взаимного базирования деталей, узлов и оснастки
- •7.1 74 Рафинирование расплавленного металла при сварке и наплавке.
- •7.2 36 Общие принципы расчета балок и стоек.
- •7.3 47 Основные схемы электрической контактной сварки.
- •7.4 Технология контроля стыковых и тавровых сварных соединений методами узд-к
- •7.5 Сущность сборки, требования к технологическому процессу сборки, выбор последовательности сборки сварной конструкции из деталей. Способы достижения точности размеров при сборке.Docx
- •Методы достижения необходимой точности при сборке
- •8.1 42 Основные закономерности процесса кристаллизации расплавленного металла в сварочной ванне. Понятие о первичной и вторичной кристаллизации металлов. Ликвация примесей и ее причины
- •8.2 39 . Общие принципы расчета трубопроводов
- •8.3 1 Сущность процесса контактной точечной и рельефной связки. Области их применения.
- •8.4 Радиационные методы контроля, их классификация. Основные единицы измерения
- •8.5 Борьба со сварочными деформациями с помощью сварочных приспособлений. Крепление деталей и узлов с деформированием в сборочно-сварочной оснастке.
- •9.1 Деформирование металла при высоких температурах сварки
- •9.2 38 Общие принципы расчета сварных ферм
- •9.3 Сущность процесса контактной шовной сварки.
- •Сущность процесса
- •9.4 Источники тормозного излучения: рентгеновские аппараты и ускорители
- •9.5 Правка сварных конструкций перед их термо и мехобработкой.
- •10.1 Горячие трещины при сварке. Причины их образования и меры борьбы
- •10.2 30 Методы повышения эффективности автоматической сварки под слоем флюса.
- •10.3 Сущность процессов контактной стыковой сварки. Сущность процесса
- •10.5 Основные технологические требования, предъявляемые к сборочно-сварочной оснастке. Порядок проектирования специальной оснастки. Необходимость и рентабельность ее использования.
- •11.1 Холодные трещины при сварке. Влияние различных факторов на их образование. Меры борьбы с образованием холодных трещин при сварке.
- •11.2 Расчет сварных конструкций по допускаемым напряжениям и несущей способности.
- •11.3 Сущность жестких и мягких режимов контактной сварки. Области их применения.
- •11.4 Физические основы радиационного метода контроля. Основные параметры радиационного контроля.
- •11.5 32 Механизация и автоматизация сварочного производства в условиях самостоятельности предприятий и повышения требований к качеству продукции.
- •12.1 Характерные зоны металла в сварных соединениях. Структурные превращения в металлах в зоне
- •12.2 44 Основные принципы проектирования сварных конструкций и технологии их изготовления.
- •12.3 Циклограммы работы машин контактной сварки (точечной, шовной, стыковой — сопротивлением и оплавлением)
- •12.4 27. Методика и техника радиоскопии. Биологическое действие ионизирующего излучения. Основные санитарные нормы и защита от излучения.
- •13.1 95.Технологическая свариваемость сталей и других металлов и сплавов, и факторы ее определяющие. Методы испытания материалов на свариваемость и определение свойств сварочных материалов.
- •13.2 75. Сварка неплавящемся электродом в среде инертных газов. Разновидности способов и области их применения.
- •13.3 Схема однофазной конденсаторной контактной машины:
- •14.1 40. Общий характер термодеформационного воздействия на металл при сварке и его последствия
- •14.3 Особенности технологии контактной сварки (точечной и шовной) низко- и среднеуглеродистых сталей.
- •6.2. Содержание процесса освоения новой продукции и принципы его организации
- •6.3. Организация перехода на выпуск новой продукции
- •6.4. Планирование показателей производства новых изделий
- •15.1 Электрическая дуга как сварочный источник тепла.
- •12.5 Сущность процесса сварки под флюсом.
- •15.3 55 Особенности технологии контактной сварки.
- •Сварка низко- и среднелегированных закаливающихся сталей.
- •15.4 Сущность процесса магнитографической дефектоскопии. Области ее применения.
- •15.5 Технологичность сварных конструкций. Связь между технологичностью и уровнем механизации и автоматизации сборочно-сварочного производства.
- •16.1 Влияние магнитных полей как собственных, так и посторонних (продольных и поперечных) на поведение дуги и жидкого металла сварочной ванны. Методы борьбы с нестабильным горением дуги.
- •16.2 53. Особенности сварки чугуна. Технология горячей, полугорячей и холодной сварки чугуна. Материалы, применяемые при сварке чугуна.
- •Горячая сварка
- •Холодная сварка
- •16.3 Технологические особенности контактной сварки (точечной и шовной) высоколегированных и жаропрочных сталей.
- •16.4 Физическая сущность и классификация магнитных
- •16.5 94. Технические условия
- •Показатели технологичности сварной конструкции.
- •17.1 49. Основные типовые схемы контактной сварки, область их применения.
- •Типовые регуляторы времени и циклов сварки
- •Автоматическое регулирование процессов точечной сварки.
- •Основные параметры контактной сварки и их влияния на качество сварных соединений.
- •17.2 78. Способы легирования металла сварных швов и наплавленного металла. Способы наплавки поверхностей деталей металлом с особыми свойствами, их особенности и область применения.
- •17.3 Технологические особенности контактной сварки (точечной и шовной) алюминия и его сплавов.
- •17.4 29 Методика контроля вихревыми токами и феррорезонансными методам.
- •17.5 Виды технологических процессов заготовительного производства.
- •18.1 10. Классификация сварочных материалов
- •18.2 Технология ручной дуговой сварки.
- •Техника выполнения шва и режим сварки зажигание сварочной дуги
- •Положение и перемещение электрода при сварке
- •Порядок выполнения швов
- •Подбор силы тока и диаметра электрода
- •Достоинства способа:
- •Недостатки способа:
- •Рациональные области применения:
- •18.3 Схема установки для элс. Принцип ее работы.
- •Основные параметры режима электронно-лучевой сварки (таблица 1):
- •Сварка электронным лучом имеет значительные преимущества:
- •Недостатки электронно-лучевой сварки:
- •18.4 Пневматические и гидравлические методы течеискания. Испытания керосином и пенетрантами.
- •18.5 33 Механизация и автоматизация термической резки. Технология раскроя деталей из листового и профильного проката
- •Технология раскроя
- •19.2 Теоретические основы пайки металлов. Физико-химические процессы образования паяного соединения. Способы пайки. Технология пайки. Назначение припоев, флюсов и газовых сред.
- •Достоинства пайки:
- •Классификация пайки Виды капиллярной пайки:
- •Виды некапиллярной пайки:
- •Классификация спаев:
- •Конструкционные параметры паяных соединений (рисунок 2)
- •Припои и паяльные смеси. Требования предъявляемые к ним:
- •Классификация припоев:
- •Классификация флюсов:
- •Механизмы флюсования:
- •Состав флюсов:
- •Флюсы подразделяются на 4 группы:
- •Газовые среды:
- •19.3 57 Особенности формирования сварных швов при элс.
- •19.4 51. Основы, классификация и чувствительность физических методов течеискания
- •19.5 Влияние технологии и последовательности сборки на механизацию и автоматизацию сборочных и сварочных операций. Механизация сборочно-сварочных работ
- •20.1 Сварочные флюсы, их классификация, технические требования, предъявляемые к флюсам для автоматической электродуговой и электрошлаковой сварки и наплавки. Технологические схемы их производства.
- •77) Способы автоматической сварки под флюсом, влияние технологических факторов и режимов сварки на форму и размеры сварных швов. Пути повышения производительности процесса.
- •Достоинства способа:
- •Недостатки способа:
- •Области применения:
- •Пути повышения производительности:
- •Зависимость формы, размеров и состава металла шва от режима сварки и технологических факторов
- •20.2 Сущность плазменной обработки материалов.
- •20.3 43 Основные параметры элс и их влияние на формирование шва.
- •Параметры и показатели элс
- •Основные параметры режима электронно-лучевой сварки (таблица 1):
- •Техника электронно-лучевой сварки
- •Камеры и вакуум для электронно-лучевой сварки
- •Сварка электронным лучом имеет значительные преимущества:
- •20.4 Газоэлектрические течеискатели.
- •20.5 68.Проектирование сборочно — сварочных цехов. Исходные данные. Экономические показатели проектирования сварочных цехов и участков.
- •21.1 Влияние сварочных материалов на свойства сварных соединений из сталей различных структурных классов и легирования.
- •21.2 Физико-химические основы кислородной резки
- •21.3 Принципиальная схема лазерной обработки. Основные параметры лазерной сварки.
- •21.4 Оценка качества соединений при разрушающих испытаниях. Оценка дефектности соединения
- •Оценка дефектности соединения
- •21.5 72. Расчет потребности в оборудовании и производственных площадей сборочно-сварочных цехов
- •Выбор флюсов и сварочных проволок для сварки углеродистых, низколегированных и высоколегированных сталей и сплавов.
- •22.1 Флюсы для высоколегированных сталей
- •22.2 Газосварочное ацетилено-кислородное пламя, его структура и свойства. Основные стадии горения газа. Способы газотермической обработки и области их применения
- •22.3 Диффузионная сварка, ее сущность, принципиальная схеме установки для диффузионной сварки. Области применения диффузионной сварки
- •22.4 26. Металлографические методы контроля, химический анализ коррозионные испытания. Их задачи и области применения
- •22.5 Технология сварки сталей одного структурного класса, но различного уровня легирования.
- •23.1 31 Методы расчета химического состава металла при ручной дуговой и автоматической сварке под флюсом.
- •23.2 Технологические методы предупреждения и устранения сварочных напряжений и деформаций.
- •1. Термическая правка с местным нагревом
- •2. Термическая правка с общим нагревом (отжиг)
- •3. Холодная механическая правка
- •4. Термомеханическая правка
- •23.3 Диффузионная сварка металла
- •23.4 Испытания на растяжение, изгиб и сопротивление хрупкому разрушению. Их задачи, оцениваемые характеристики основного металла и сварных соединений. При испытании на растяжении
- •23.5 52.Особенности выбора режимов и технологии сварки аустенитных сталей. Термообработка сварных конструкций из аустенитных сталей.
- •24.1 Технологическая схема производства электродов с качественным покрытием.
- •24.4 Классификация методов неразрушающего и разрушающего контроля
- •24.5 Технология сварки меди и медных сплавов.
- •Склонность к порообразованию
- •Подготовка под сварку
- •Газовая сварка
- •Ручная сварка
- •Автоматическая сварка под флюсом
- •Электрошлаковая сварка меди и ее сплавов
- •Дуговая сварка в защитных газах
- •Другие способы сварки
- •25.2 Изменения теплофизических и физико-механических свойств материалов при нагреве
- •25.3Принципиальная схема сварки взрывом. Области ее применения. Свариваемые материалы.
- •25.4 Задачи и возможности статистического метода контроля качества.
- •25.5 Сварка алюминия и алюминиевых сплавов
- •Технология сварки
25.5 Сварка алюминия и алюминиевых сплавов
Алюминиевые сплавы используют в сварных конструкциях различного назначения. Основными достоинствами их как конструкционных материалов являются малая плотность, высокая удельная прочность, высокая коррозионная стойкость. Чистый алюминий, ввиду низкой прочности, для изготовления конструкций используют в отдельных случаях в химической, пищевой и электротехнической промышленности. Алюминий высокой чистоты применяют в отраслях новой техники, в том числе при производстве полупроводников. В качестве конструкционных материалов в основном используют полуфабрикаты из алюминиевых сплавов. По показателям отношения прочности и текучести к плотности высокопрочные алюминиевые сплавы значительно превосходят чугун, низкоуглеродистые и низколегированные стали, чистый титан и уступают лишь высоколегированным сталям повышенной прочности и сплавам титана.
Алюминиевые сплавы разделяют на литейные и деформируемые по пределу растворимости элементов в твердом растворе. В сварных конструкциях в основном используют полуфабрикаты (листы, профили, трубы и др.) из деформируемых сплавов. Концентрация легирующих элементов деформируемых сплавов меньше предела растворимости, и при нагреве эти сплавы могут быть переведены в однофазное состояние, при котором обеспечивается их высокая деформационная способность.
Большинство элементов, входящих в состав алюминиевых сплавов, обладает ограниченной растворимостью, изменяющейся с температурой. Это сообщает сплавам способность упрочняться термической обработкой. В связи с этим деформируемые сплавы разделяют на сплавы, не упрочняемые термической обработкой с концентрацией легирующих элементов ниже предела растворимости при 20 0С), и сплавы, упрочняемые термической обработкой (имеющие концентрацию легирующих элементов свыше этого предела).
К деформируемым сплавам, не упрочняемым термической обработкой, относятся технический алюминий АД1, АД, алюминиево-марганиевый сплав АМц (Аl + 1,3% Мg) и группа сплавов системы А1—Мg: АМг1, АМг2, АМг3 и АМг6. В сварных соединениях эти сплавы способны сохранять до 95% прочности основного металла при высокой пластичности и высокой коррозионной стойкости.
Термически упрочняемые деформируемые алюминиевые сплавы могут быть разделены на несколько групп.
1. Дуралюмины — сплавы на основе системы А1—Сu—Мg: Д1, Д16, Д19, ВАД1, ВД17, М40, Д18.
2. Авиали — сплавы на основе системы А1— Мg—Si и А1—Сu—Мg—Si АВ, АД31, АД33, АД35, АК6, АК6-1, АК8.
3. Сплавы на основе системы А1—Сu—Мg—Fe—Ni: АК2, АК4, АК4-1.
23 (Al—Cu—Mn—Li—Cd)4. Сплавы на основе системы А1—Сu—Мn: Д20, Д21 и ВАД
5. Сплавы на основе системы Аl—Zn—Mg—Cu^ В93, В95, В96, В94.
6. Сплавы на основе системы А1—Мg—Zn: В92, В92Ц, АЦМ.
Из перечисленных сплавов к свариваемым относятся: АД, АД1, АМц, АМг, АМг3, АМг5В, АМг6, АВ, АД31, АДЗЗ, АД35, М40, Д20, ВАД1, В92Ц.
Для сварочных работ используют проволоку из алюминия и алюминиевых сплавов по ГССТ 7871—75;
В сварочной ванне алюминиевые сплавы взаимодействуют с газами и шлаками. Металлургические особенности сварки алюминия и его сплавов определяются взаимодействием их с газами окружающей среды, интенсивностью испарения легирующих элементов, а также особенностями кристаллизации в условиях сварочного процесса.
При 1000 0С реакция окисления алюминия может протекать при рО2 = 44,06*10-46МПа. Образующаяся окись алюминия покрывает поверхность деталей плотней и прочной пленкой. При 20 0С процессы окисления алюминия протекают по параболическому закону. Важной характеристикой окисной пленки алюминия является ее способность адсорбировать газы, в особенности водяной пар. Последний удерживается окисной пленкой до температуры плавления металла.
Коэффициент теплового расширения окисной пленки почти в 3 раза меньше коэффициента расширения алюминия, поэтому при нагреве металла в ней образуются трещины. При наличии в алюминии легирующих добавок состав окисной пленки может существенно меняться. Возникающая сложная окисная пленка в большинстве случаев является более рыхлой, гигроскопичной и обладает худшими защитными свойствами.
Окисная пленка на поверхности алюминия и его сплавов затрудняет процесс сварки. Обладая высокой температурой плавления (2050 0С), окисная пленка не расплавляется в процессе сварки и покрывает металл прочной оболочкой, затрудняющей образование общей ванны. Вследствие высокой адсорбционной способности к газам и парам воды окисная пленка является источником газов, растворяющихся в металле, и косвенной причиной возникновения в нем несплошностей различного рода. Частицы окисной пленки, попавшие в ванну, а также часть пленок с поверхности основного металла, не разрушенных в процессе сварки, могут образовывать окисные включения в швах, снижающие свойства соединений и их работоспособность.
Для осуществления сварки должны быть приняты меры по разрушению и удалению пленки и защите металла от повторного окисления. С этой целью используют специальные сварочные флюсы или сварку осуществляют в атмосфере инертных защитных газов. Вследствие большой химической прочности соединения А12О3 восстановление алюминия из окисла в условиях сварки практически невозможно. Не удается также связать А12О3 в прочные соединения сильной кислотой или основанием Поэтому действие флюсов для сварки алюминия основано на процессах растворения и смывания диспергированной окисной пленки расплавленным флюсом. В условиях электродуговой сварки в интертных защитных газах удаление окисной пленки происходит в результате электрических процессов, происходящих у катода (катодное распыление). В этих условиях возникает необходимость повышения требований к качеству предварительной обработки деталей перед сваркой с целью получения тонкой и однородной пленки по всей поверхности свариваемых кромок. Для предупреждения дополнительного окисления и засорения ванны окислами необходимо применять защитный газ высокой чистоты.
Водород, в отличие от других газов, обладает способностью растворяться в алюминии и при определенных условиях образовывать поры в металле швов. Растворимость водорода в алюминии изменяется при различных температурах. Концентрация растворенного в металле водорода [Н] зависит от давления молекулярного водорода, находящегося с ним в равновесии.
В реальных условиях парциальное давление молекулярного водорода в газовой фазе дуги ничтожно мало. Поэтому основным источником водорода, растворяющегося в сварочной ванне, является реакция взаимодействия влаги, содержащейся в окисной пленке с металлом. В результате протекания этой реакции концентрация атомарного водорода в поверхностном слое атмосферы, контактирующей с металлом, может соответствовать большому давлению молекулярного водорода, находящегося в равновесии с металлом. Поэтому при наличии паров воды в зоне ванны концентрация растворенного в металле водорода может оказаться намного больше равновесной. При охлаждении растворенный водород в связи с понижением растворимости стремится выделиться из металла. Пузыри выделяющегося водорода, не успевая всплыть из ванны, остаются в шве, образуя поры. Поэтому основной мерой борьбы с пористостью при сварке алюминия является снижение концентрации растворенного в нем водорода до предела ниже 0,69—0,7 см3/100 г металла. Основным источником водорода, растворяющегося в металле шва при аргонодуговой сварке, является влага, адсорбированная поверхностью металла и входящая в состав окисной пленки в виде гидратированных окислов. Количество ее определяется состоянием поверхности металла и зависит от обработки его перед сваркой.
Предупреждению пористости при сварке алюминия может способствовать сокращение удельной поверхности присадочной проволоки за счет увеличения ее диаметра и уменьшения доли участия присадочного металла в образовании шва. Рациональную обработку поверхности проволоки и основного металла применяют с целью уменьшения толщины окисной пленки и запаса имеющейся в ней влаги. Магний увеличивает растворимость водорода в алюминии, поэтому повышенная склонность к пористости при сварке алюминиево-магниевых сплавов объясняется другим механизмом образования пор. На поверхности сплавов, содержащих магний, присутствует окисная пленка, состоящая из окислов А12О3 и МgO. Такая пленка имеет большую толщину, меньшую плотность из-за дефектов ее строения и больший запас влаги, чем пленка из А12О3. В процессе сварки при расплавлении основного и присадочного металлов часть влаги, содержащейся во внутренних дефектах пленки, не успевает прореагировать. Попадающие в ванну частицы пленки содержат остатки влаги, которая разлагается с выделением водорода. Образовавшийся водород в дефектах пленки переходит в молекулярную форму и затем выделяется в жидком металле ванны в виде пузырьков, минуя стадию растворения. При таком механизме образования пор в качестве мер уменьшения пористости, кроме обычных, связанных с применением рациональной обработки поверхности проволоки и основного металла, а также сокращения удельной поверхности проволоки, участвующей в образовании шва, эффективной мерой борьбы с пористостью становится ужесточение режимов. Однако при ужесточении режимов возникает опасность увеличения давления водорода в несплошностях, что затрудняет выполнение многослойных швов и подварку.
Кристаллическая структура металла шва определяет его механические свойства. Чистый алюминий при кристаллизации обладает способностью образовывать в металле швов грубую крупнокристаллическую структуру.
При сварке алюминиевых сплавов кристаллическая структура и механические свойства металла швов могут изменяться в зависимости от состава сплава, используемого присадочного металла, способов и режимов сварки. Для всех способов сварки характерно наличие больших скоростей охлаждения и направленного отвода тепла. При кристаллизации в этих условиях часто развивается дендритная ликвация, что приводит к появлению в структуре металла эвтектики. Эвтектика снижает пластичность и прочность металла. В связи с этим в швах возможно возникновение кристаллизационных трещин в процессе кристаллизации. Улучшение кристаллической структуры металла швов при сварке алюминия и некоторых его сплавов может быть достигнуто модифицированием в процессе сварки. Поэтому в качестве присадочного металла при сварке все большее применение находят специальные проволоки с добавками модификаторов. Введение этих элементов в небольших количествах позволяет улучшить кристаллическую структуру металла швов и снизить их склонность к трещинообразованию. Перемешивание металла сварочной ванны в процессе сварки с помощью внешнего магнитного поля также снижает склонность металла швов к трещинообразованию.
При выборе присадочного металла следует также учитывать возможность появления в структуре металла швов различных химических соединений. При сварке сплавов алюминия, содержащих магний, с применением присадочной проволоки, содержащей кремний, в металле швов и особенное зоне сплавления появляются иглообразные выделения Мg2Si, снижающие пластические свойства сварных соединений. Неблагоприятно влияют на свойства соединений из сплавов системы А1—Мg ничтожно малые добавки натрия, которые могут попадать в металл шва через флюсы.
Свойства сварных соединений зависят также от процессов, протекающих в околошовных зонах. При сварке чистого алюминия и сплавов, неупрочняемых термической обработкой, в зоне теплового воздействия наблюдается рост зерна и некоторое их разупрочнение, вызванное снятием нагартовки. Рост зерна и разупрочнение нагартованного металла при сварке изменяется в зависимости от способа сварки, режимов и степени предшествовавшей нагартовки сплава. Свариваемость сплавов А1—Мg осложняется повышенной чувствительностью их к нагреву и склонностью к образованию пористости и вспучиванию в участках основного металла, непосредственно примыкающих к шву. Способность этих сплавов образовывать пористость в зонах термического воздействия связывается с наличием в слитках молекулярного водорода. После обработки таких слитков (прессования или прокатки) в металле образуются несплошности в виде каналов или коллекторов, в которых водород находится под высоким давлением. Для проверки качества металла, предназначенного для сварки, рекомендуется проводить специальную пробу.
При сварке сплавов, упрочняемых термической обработкой, в зонах около шва происходят изменения, ухудшающие свойства свариваемого металла. Измерение твердости и изучение структуры металла в зоне термического воздействия сплавов этой группы позволяют обнаружить в ней участки металла с различной степенью распада твердого раствора и коагуляции упрочнителя. Однако самым опасным изменением, резко ухудшающим свойства металла и способствующим образованию трещин, является оплавление границ зерен. Появление жидких прослоек между зернами снижает механические свойства металла в нагретом состоянии и способствует образованию кристаллизационных трещин.
Независимо от способа сварки и исходного состояния металла в непосредственной близости от шва наблюдается зона оплавления границ зерен. Ширина этой зоны меняется в зависимости от способа и режимов сварки. Наиболее широкая зона появляется при газовой сварке и более узкая — при способах сварки с жестким термическим воздействием. Распределение эвтектики в этой зоне изменяется в зависимости от исходного состояния сплава. В сварных соединениях, полученных при сварке закаленного сплава, эвтектика располагается в виде сплошной прослойки вокруг зерен, в то время как в соединениях из отожженного металла в залегании эвтектики появляются несплошности. Последующей термической обработкой не удается восстановить свойства металла в зоне, прилежащей к шву, что приводит к большому изменению прочности соединений и делает ненадежными эти соединения в эксплуатации.
Сплавы Д20, ВАД1, М40 и др. имеют лучшую свариваемость. Особенно перспективными являются самозакаливающиеся сплавы тройной системы А1—Mg—Zn. При сварке этих сплавов удается получить соединения с прочностью 80—90% прочности основного металла в закаленном и состаренном состоянии.
Алюминий и его сплавы отличаются высокой тепло- и электропроводностью, что вызывает необходимость применения больших токов и мощных машин для электроконтактной сварки, особенно при точечной сварке этих материалов. Для повышения эффективности нагрева и плавления целесообразно сваривать эти металлы при малой длительности импульсов тока или на больших скоростях при сварке плавлением.
Сварные конструкции из алюминия и его сплавов склонны к короблению, что объясняется относительно высоким коэффициентом теплового расширения. Снижение деформаций в конструкциях может быть достигнуто за счет использования технологических мероприятий (выбор соответствующего способа сварки, подбор оптимальных режимов, подогрев и др.).
