- •1. Виды коррозии
- •2. Теория электрохимической коррозии. Уравнение нернста
- •3. Защитная оксидная пленка. Величина изменения энергии гибса
- •4. Водородная деполяризация. Процессы окисления и восстановления на поверхности металла
- •5. Плакирование и наплавка металла и сплавов
- •6. Неорганические и органические кремнесодержащие (стеклоэмалевые и органические) покрытия
- •7. Технологические покрытия
- •8. Защитные атмосферы. Применение инертных газов и вакуума. Технологические покрытия.
- •9. Диффузионная зона сплава. Селективная коррозия.
- •10. Выбор конструкционных металлов. Рациональное конструирование оборудования и его принципы.
- •11.Основные параметры контроля. Циклические коррозионные испытания.
- •12. Коррозионные испытания: Лабораторные, в природных условиях и эксплуатационные
- •13. Коррозия при изменениях агрегатного состояния.
- •14. Лакокрасочная и катодная защита
- •15. Аэрозолирование
- •16. Типовые технологические процессы для различных коррозионных сред
- •17. Коррозионные растрескивание
- •18. Питтинговая (точечная) коррозия
- •19. Коррозия оборудования в агрессивных средах
- •20. Способы увеличение срока службы быстроизнашивающихся деталей оборудования.
- •21. Метод наплавки.
- •22. Контроль основных параметров коррозии
- •23. Изменение функции электродов. Внешние источники постоянного тока.
- •24. Катализаторы. Химическая адсорбция
- •25.Aдсорбция газов на металлах
- •26.Расчет эдс гальванического элемента
- •27. Определение термодинамических параметров
- •28.Принцип подбора защитных покрытий
- •29.Определение влияние рН среды на скорость коррозии металлов
- •32. Вычисление k d – коэффициента взаимной диффузии кислорода и металла в окисле.
- •35. Коррозия железа под действием кислорода воздуха при высокой температуре.
- •37.Технология хромирования
- •38.Износостойкое покрытие хромом
- •39. Условия хромирования
- •40. Хромирование аллюминия
- •41. Сущность процесса коррозии
- •42. Причины возникновения коррозии в машиностроении
- •49. Механизм газовой коррозии.
- •50.Адсорбция газов на металлах.
- •51. Влияние электропроводности.
- •52. Кинетика процесса окисления металла.
- •53. Ингибиторы коррозии
- •54. Ингибиторы в кислых средах
- •55. Режим хромирования.
- •56. Гетерогенный механизм электрохимической коррозии:
- •57. Гомогенный механизм электрохимической коррозии:
- •58. Этапы роста питтинга.
- •59. Фреттинг-коррозия
- •60. Защита изделий от фреттинг-коррозии
4. Водородная деполяризация. Процессы окисления и восстановления на поверхности металла
Коррозию металлов, при которой катодная реакция осуществляется с выделением водорода, называют коррозией металлов с водородной деполяризацией.
Коррозия металлов с водородной деполяризацией имеет место:
,
т.е. в растворах кислот, например,
кислотное растворение железа, цинка и
других металлов;
при достаточно отрицательных значениях потенциала ионизации металла, например, коррозия магния в воде или растворах солей.
На практике с такими явлениями сталкиваются при хранении и перевозке кислот, при кислотном травлении металлов, при получении кислот на стадии абсорбции.
(последнее
отвечает парциальному давлению
в
атмосфере)
Катодный процесс выделения водорода состоит из стадий:
массопереноса гидратированных ионов водорода к поверхности металла;
от
поверхности металла.
крайне
мала и выделение водорода происходит
за счет восстановления молекул воды:
не
наблюдается.
Главными причинами катодной поляризации является замедленная стадия электрохимического разряда или концентрационная поляризация по молекулярному водороду, связанная с отводом газообразного продукта.
являются
большим и самостоятельным вопросом, в
изучение и развитие которого значительный
вклад внесли работы ученых научной
школы академика А.Н. Фрумкина. Эти работы
широко освещаются в учебниках по
электрохимии. Мы приведем только
краткие, основные сведения.
зависимость
изменения потенциала от плотности тока
является линейной.
равен
118 мВ, что отвечает механизму замедленной стадии разряда с переносом одного электрона, хотя не исключены и другие механизмы.
Константа а в уравнении Тафеля (4.22) зависит от материала катода или материала инородных катодных включений в составе сплавов и численно определяется как величина перенапряжения при плотности тока, равной 1 А/см2. Наиболее высокое перенапряжение наблюдается на свинце, ртути, кадмии, цинке.
Поляризация вследствие замедленной диффузии молекулярного водорода носит название газовой концентрационной поляризации. Она сопровождает процесс водородной деполяризации, начиная с самых низких плотностей катодного тока.
имеет
вид, изображенный на рис. 4.6 (участки АВ
и ВС).
.
Давление внутри металла увеличивается
и происходит разрыв сплошности металла.
Таким образом, коррозия металлов с водородной деполяризацией характеризуется:
большой зависимостью скорости коррозии металла от рН раствора;
большой зависимостью коррозионной стойкости сплавов от их природы и содержания в них катодных примесей;
увеличением скорости коррозии во времени, что связано с ростом посторонних примесей на поверхности металла в результате его расторения;
возможностью появления водородной хрупкости металлов.
Окисли́тельно-восстанови́тельные реа́кции, также редокс (сокр. англ. redox, от reduction-oxidation — восстановление-окисление) — это встречно-параллельные химические реакции, протекающие с изменением степеней окисления и не более 2-х атомов, входящих в состав реагирующих веществ (или ионов веществ), реализующимся путём перераспределения электронов между атомом-окислителем (акцептором) и атомом-восстановителем (донором).
процессе окислительно-восстановительной реакции восстановитель отдаёт электроны, то есть окисляется; окислитель присоединяет электроны, то есть восстанавливается. Причём любая окислительно-восстановительная реакция представляет собой единство двух противоположных превращений — окисления и восстановления, происходящих одновременно и без отрыва одного от другого
Окисление — процесс отдачи электронов с увеличением степени окисления.
При окисле́нии вещества в результате отдачи электронов увеличивается его степень окисления. Атомы окисляемого вещества называются донорами электронов, а атомы окислителя — акцепторами электронов.
В некоторых случаях при окислении молекула исходного вещества может стать нестабильной и распасться на более стабильные и более мелкие составные части (см. Свободные радикалы). При этом некоторые из атомов получившихся молекул имеют более высокую степень окисления, чем те же атомы в исходной молекуле.
Восстановитель, отдавая электроны, приобретает окислительные свойства, превращаясь в сопряжённый окислитель (сам процесс называется окислением):
восстановитель - e− ↔ сопряжённый окислитель.
Несвязанный, свободный электрон является сильнейшим восстановителем.
Восстановление
Восстановле́ние — процесс присоединения электронов атомом вещества, при этом его степень окисления понижается.
При восстановлении атомы или ионы присоединяют электроны. При этом происходит понижение степени окисления элемента. Примеры: восстановление оксидов металлов до свободных металлов при помощи водорода, углерода, других веществ; восстановление органических кислот в альдегиды и спирты; гидрогенизация жиров и др.
Окислитель, принимая электроны, приобретает восстановительные свойства, превращаясь в сопряжённый восстановитель (сам процесс называют восстановлением):
окислитель + e− ↔ сопряжённый восстановитель.
