- •1.1 Предмет механики жидкости и ее задачи 4
- •1.2. Математическое моделирование 7
- •3.4.1. Примеры, имеющие самостоятельное значение 56
- •Введение
- •1.1 Предмет механики жидкости и ее задачи
- •1.2. Математическое моделирование
- •2. Основные понятия и определения
- •2.1 Начальные понятия, свойства жидкости
- •Гипотеза сплошности
- •2.2.1. Понятия: плотность, удельный вес, модуль упругости
- •2.3. Силы, действующие в жидкости
- •2.3.1. Объемные (массовые) силы
- •Поверхностные силы
- •2.3.2.1. Касательные силы
- •2.3.2.2. Нормальные силы
- •2.3.2.2.1. Давление
- •Нормальные силы, обусловленные изменением скорости течения
- •Тензор напряжения поверхностной силы
- •3. Векторы и тензоры в гидродинамике
- •3.1. Тензоры
- •3.1.1. Правила действия над тензорами
- •1. Операция транспонирования тензора
- •2. Симметричный тензор
- •4. Умножение тензора на скаляр
- •5. Сложение тензоров
- •6. Умножение вектора на тензор
- •7. Единичный тензор
- •3.2. Гидромеханический смысл некоторых операций векторного анализа
- •3.2.1. Div (дивергенция скорости)
- •3.2.2. Grad р (градиент давления)
- •3.2.3 Rot (ротор скорости)
- •3.3. Символическое исчисление
- •3.3.1. Оператор Гамильтона
- •3.3.2. Правила символического исчисления
- •3.3.3. Примеры, имеющие самостоятельное значение
- •3.3.4. Оператор Лапласса (лапласиан)
- •3.4. Представление дифференциальных операций векторного анализа в декартовой системе координат
- •3.4.1. Примеры, имеющие самостоятельное значение
- •3.5. Преобразование объемных интегралов в поверхностные
- •3.6. Дифференциальные тензоры
- •3.7. Безвихревые и соленоидальные векторные поля
- •4. Основные уравнения движения жидкости
- •4.1. Способы описания движения жидкости
- •1. Подход Лагранжа
- •2. Подход (способ) Эйлера
- •4.2. Кинематика жидкой частицы (движение жидкой частицы в общем виде)
- •4.3. Виды движения жидкости
- •4.3.1. Субстанциональная производная бесконечно малой частицы жидкости
- •1. Случай установившегося движения.
- •2. Случай неустановившегося движения
- •4.3.2. Обобщение понятия субстанциональной производной бесконечно малой частицы жидкости
- •4.3.2.1. Ускорение жидкой частицы
- •4.4. Субстанциональное изменение количественного параметра конечной массы вещества
- •4.5. Интегральная запись законов сохранения материи, количества движения и момента количества движения
- •Закон сохранения материи
- •2. Закон количества движения
- •3. Закон моментов количества движения
- •4.6. Дифференциальное уравнение закона сохранения материи (Уравнение сплошности или неразрывности)
3.1.1. Правила действия над тензорами
1. Операция транспонирования тензора
В тензоре (3.7), представленном матрицей, поменяем местами строчки и столбцы. В результате получим новый тензор α*, который называется сопряженным тензору α:
т.е. имели раньше
получим:
(3.8)
Замечание:
Тензор α* отличается от α, т.к. элементы строки матрицы есть составляющие векторов, образующих тензор. Таким образом, тензоры α* и α составлены из разных векторов.
2. Симметричный тензор
Если в матрице тензора составляющие расположенные симметрично главной диагонали (элементов αxx, αyy, αzz) попарно равны (т.е. αxy= αyx; αxz= αzx, …), то такой тензор называется симметричным.
Замечание:
При транспонировании симметричный тензор не претерпевает изменений, т.е. αс= α*.
3. Антисимметричным или кососимметричным тензором называется тензор, образованный матрицей:
(3.9)
Т.е. в антисимметричном тензоре элементы главной диагонали есть нули, а остальные попарно равны и противоположны по знаку.
4. Умножение тензора на скаляр
Для того чтобы умножить тензор на скаляр, необходимо умножить на этот скаляр все элементы тензора.
Замечание:
В обычной алгебре умножение на -1 меняет знак сомножителя. В тензорной алгебре, как и в алгебре векторов, такое же действие приводит к аналогичному результату.
Т.е. если антисимметричный тензор умножить на -1, то он изменит свой знак, а это действие тождественно транспонированию антисимметричного тензора.
5. Сложение тензоров
Для сложения тензоров необходимо сложить все их одноименные составляющие.
Т.е. сложение тензоров осуществляется так же, как сложение векторов.
Например:
(3.10)
это равенство можно рассматривать, как разложение тензора α на три других α1; α2; α3.
Особенно примечателен случай такого разложения тензора (нам в дальнейшем понадобится):
(3.11)
где α* тензор сопряженный тензором α.
Осуществим это разложение в явном виде:
(3.12)
Видим, что первый тензор есть симметричный, а второй - кососимметричный, т.о. мы установили теорему:
Всякий тензор может быть представлен в виде суммы симметричного и антисимметричного тензоров.
Ранее мы отмечали, что тензор составляется из векторов так же, как вектор составляется из чисел (скаляров), и в связи с этим записали равенства (3.6) и (3.7). С другой стороны, более привычное представление вектора имеет такой вид:
Аналогично можно представить и тензор
(3.13)
По форме записи два последних выражения совершенно тождественны. Различие заключается в том, что вместо скаляров αx, αy, αz во втором равенстве стоят векторы , , , но это и есть как раз выражение того утверждения, что тензор составляется из векторов тем же способом, что вектор из чисел.
То обстоятельство, что в верхнем соотношении орты стоят после скаляров, несущественно, так как умножение скаляра на вектор справа и слева дает одинаковый результат и в этом смысле оба равенства можно записать похожим способом.
Замечание:
Для тензора местонахождение ортов около образующих его векторов имеет важное значение, поэтому уславливаются писать их впереди.
В равенстве (3.13) не определен никак знак умножение вектора на орты. Уславливаются называть такое умножение диадным и под ним понимают умножение без специальных правил, присущих, например, скалярному или векторному произведению. Тогда, имея в виду, что векторы , , могут быть представлены как суммы их составляющих, равенство (3.13) можно записать в виде следующей совокупности слагаемых:
(3.14)
Здесь
,
,
и т.д. суть диадные произведения ортов.
Эти величины рассматриваются в качестве единичных фундаментальных тензоров, подобно тому, как орты , , трактуются как единичные фундаментальные вектора.
Замечание:
Сравнение равенств (3.8) и (3.14) показывает, что в матрице тензора стоят множители при единичных фундаментальных тензорах, подобно тому как в матрице (3.5) стоят множители при единичных фундаментальных векторах.
Рассмотрим равенство (3.13) и переставим в нем местами сомножители (орты и образующие тензор векторы). Тогда, производя перемножения, сопоставляя сумму аналогичную (3.14) и сравнивая множители при одинаковых фундаментальных тензорах, что получившаяся величина есть тензор, сопряженный α, т.е.
(3.15)
