- •1.1 Предмет механики жидкости и ее задачи 4
- •1.2. Математическое моделирование 7
- •3.4.1. Примеры, имеющие самостоятельное значение 56
- •Введение
- •1.1 Предмет механики жидкости и ее задачи
- •1.2. Математическое моделирование
- •2. Основные понятия и определения
- •2.1 Начальные понятия, свойства жидкости
- •Гипотеза сплошности
- •2.2.1. Понятия: плотность, удельный вес, модуль упругости
- •2.3. Силы, действующие в жидкости
- •2.3.1. Объемные (массовые) силы
- •Поверхностные силы
- •2.3.2.1. Касательные силы
- •2.3.2.2. Нормальные силы
- •2.3.2.2.1. Давление
- •Нормальные силы, обусловленные изменением скорости течения
- •Тензор напряжения поверхностной силы
- •3. Векторы и тензоры в гидродинамике
- •3.1. Тензоры
- •3.1.1. Правила действия над тензорами
- •1. Операция транспонирования тензора
- •2. Симметричный тензор
- •4. Умножение тензора на скаляр
- •5. Сложение тензоров
- •6. Умножение вектора на тензор
- •7. Единичный тензор
- •3.2. Гидромеханический смысл некоторых операций векторного анализа
- •3.2.1. Div (дивергенция скорости)
- •3.2.2. Grad р (градиент давления)
- •3.2.3 Rot (ротор скорости)
- •3.3. Символическое исчисление
- •3.3.1. Оператор Гамильтона
- •3.3.2. Правила символического исчисления
- •3.3.3. Примеры, имеющие самостоятельное значение
- •3.3.4. Оператор Лапласса (лапласиан)
- •3.4. Представление дифференциальных операций векторного анализа в декартовой системе координат
- •3.4.1. Примеры, имеющие самостоятельное значение
- •3.5. Преобразование объемных интегралов в поверхностные
- •3.6. Дифференциальные тензоры
- •3.7. Безвихревые и соленоидальные векторные поля
- •4. Основные уравнения движения жидкости
- •4.1. Способы описания движения жидкости
- •1. Подход Лагранжа
- •2. Подход (способ) Эйлера
- •4.2. Кинематика жидкой частицы (движение жидкой частицы в общем виде)
- •4.3. Виды движения жидкости
- •4.3.1. Субстанциональная производная бесконечно малой частицы жидкости
- •1. Случай установившегося движения.
- •2. Случай неустановившегося движения
- •4.3.2. Обобщение понятия субстанциональной производной бесконечно малой частицы жидкости
- •4.3.2.1. Ускорение жидкой частицы
- •4.4. Субстанциональное изменение количественного параметра конечной массы вещества
- •4.5. Интегральная запись законов сохранения материи, количества движения и момента количества движения
- •Закон сохранения материи
- •2. Закон количества движения
- •3. Закон моментов количества движения
- •4.6. Дифференциальное уравнение закона сохранения материи (Уравнение сплошности или неразрывности)
Силы давления проявляют себя и в движущейся среде. Там они части взаимосвязаны со скоростью течения. Но это не означает, что изменение скорости является причиной появления или изменения давления. Взаимосвязь давления и скорости при движении жидкости объясняются тем, что под влиянием внешних воздействий в потоке энергия перераспределяется между ее различными формами, что в конечном итоге сказывается на величине давления и скорости.
Нормальные силы, обусловленные изменением скорости течения
Рассмотрим малый объем жидкости ΔV в виде цилиндра, ось которого совпадает с направлением движения (рис. 1)
рис. 1.
Пусть торцовые поверхности ΔS1 и ΔS2 расположены перпендикулярно скорости жидкости, которая в этих сечениях различна по величине, но не по направлению.
Очевидно, что вследствие различия скоростей U1 и U2 при движении объема ΔV масса жидкости, заключенная внутри него, будет либо сжиматься, либо расширяться, так как торцы цилиндра будут сближаться или удаляться.
И в том и в другом случае внутренние силы сцепления между частицами будут изменяться и, значит, будут создавать некоторую силу, препятствующую этому сжатию или расширению
Будем считать (снова выдвигаем гипотезу), сто эта сила прямопропорциональна скорости смещения торцовых поверхностей относительно друг друга (т.е. скорости относительного сжатия или растяжения выделенного нами цилиндра вдоль его оси). Очевидно, что скорость деформации элемента ΔV равна ΔU = U1 - U2.
Для получения скорости
относительной деформации разделим
скорость деформации ΔU
на расстояние между сечениями Δn.
Затем перейдем к пределу в отношении
при n → 0 и получим точное
выражение рассматриваемой силы в сечении
ΔS:
(2.12)
где
- коэффициент пропорциональности.
Напряжение нормальной силы, вызванной (обусловленной) изменением скорости найдем, если перейдем к пределу в отношении при ΔS → 0, т.е.
(2.13)
Замечание:
Введенная гипотеза о прямопропорциональной зависимости силы от скорости деформации подтверждается экспериментально для жидкостей, которые подчиняются закону трения Ньютона.
Т.к. коэффициенты пропорциональности и ’ определяют внутреннее взаимодействие частиц среды при их взаимном смещении, то они связаны и между собой. Однако эта связь не однозначна и определяется характером распределения скоростей в потоке.
Тензор напряжения поверхностной силы
Рассмотрим, например, вихревое движение жидкости. Уже и для такого движения вопрос о напряжении поверхностных сил в некоторой произвольно выбранной точке, например M, оказывается значительно сложнее по сравнению с ранее рассмотренным случаем. Т.к. через выбранную точку M можно провести бесчисленное множество элементарных поверхностей ΔS, различным образом ориентированных в пространстве. На каждую такую площадку ΔS будет действовать, вообще говоря, различная сила. Т.к. для характеристики напряжения поверхностной силы в точке M необходимо задать всю совокупность бесчисленного множества сил, действующих на всевозможные элементарные площадки ΔS, включающие рассматриваемую нами точку М, то задача о математическом представлении напряжения поверхностной силы в точке, с первого взгляда, кажется совершенно безнадежной.
Однако, оказывается, практически
нет надобности задавать всю совокупность
поверхностных сил. Ориентация любой
площадки в пространстве может быть
охарактеризована единичным вектором
,
направленным по нормали к этой площадке
(т.е. единичным нормальным вектором).
Нужно лишь установить соответствия
между этим вектором и силой, действующей
на единицу поверхности характеризуемой
им площадки.
Т.е. необходимо преобразовать
вектор
в вектор
напряжения силы на данную площадку:
(2.13)
Где коэффициент
называется тензором и является величиной
иного ранга чем скаляр и вектор.
Таким образом из равенства (2.13) следует, что для характеристики напряженного состояния нужно задать не бесконечную совокупность векторов, а всего один тензор .
Замечание:
Тензор в гидромеханике имеет не только математический смысл, но и является носителем определенной физической характеристики. Термин «Тензор» происходит от латинского слова tendo, что буквально означает «напрягаю». Он возник в теории упругости и постепенно перекочевал в другие разделы науки, пока не утвердился окончательно в математике.
Тензор напряжений отличается определенными физическими свойствами. Тензор напряжений
является
симметричным тензором и геометрически
представляется в виде поверхности
эллипсоида. Поэтому в литературе нередко
встречаются термины эллипсоид напряжений,
эллипсоид инерции и т.д.Если бы напряженное состояние было однородным во все массе жидкости, то в каждой точке вектор преобразовывался бы одинаковым образом в вектор , т.е. для всех точек пространства тензор был бы одним и тем же. В общем случае меняется при переходе из одной точки в другую, а в каждой точке еще может зависеть от времени. Иными словами, справедливо равенство
,
которое приводит нас к
представлению тензорного поля, подобно
тому как равенство
утверждает существование векторного
поля.
