- •1.1 Предмет механики жидкости и ее задачи 4
- •1.2. Математическое моделирование 7
- •3.4.1. Примеры, имеющие самостоятельное значение 56
- •Введение
- •1.1 Предмет механики жидкости и ее задачи
- •1.2. Математическое моделирование
- •2. Основные понятия и определения
- •2.1 Начальные понятия, свойства жидкости
- •Гипотеза сплошности
- •2.2.1. Понятия: плотность, удельный вес, модуль упругости
- •2.3. Силы, действующие в жидкости
- •2.3.1. Объемные (массовые) силы
- •Поверхностные силы
- •2.3.2.1. Касательные силы
- •2.3.2.2. Нормальные силы
- •2.3.2.2.1. Давление
- •Нормальные силы, обусловленные изменением скорости течения
- •Тензор напряжения поверхностной силы
- •3. Векторы и тензоры в гидродинамике
- •3.1. Тензоры
- •3.1.1. Правила действия над тензорами
- •1. Операция транспонирования тензора
- •2. Симметричный тензор
- •4. Умножение тензора на скаляр
- •5. Сложение тензоров
- •6. Умножение вектора на тензор
- •7. Единичный тензор
- •3.2. Гидромеханический смысл некоторых операций векторного анализа
- •3.2.1. Div (дивергенция скорости)
- •3.2.2. Grad р (градиент давления)
- •3.2.3 Rot (ротор скорости)
- •3.3. Символическое исчисление
- •3.3.1. Оператор Гамильтона
- •3.3.2. Правила символического исчисления
- •3.3.3. Примеры, имеющие самостоятельное значение
- •3.3.4. Оператор Лапласса (лапласиан)
- •3.4. Представление дифференциальных операций векторного анализа в декартовой системе координат
- •3.4.1. Примеры, имеющие самостоятельное значение
- •3.5. Преобразование объемных интегралов в поверхностные
- •3.6. Дифференциальные тензоры
- •3.7. Безвихревые и соленоидальные векторные поля
- •4. Основные уравнения движения жидкости
- •4.1. Способы описания движения жидкости
- •1. Подход Лагранжа
- •2. Подход (способ) Эйлера
- •4.2. Кинематика жидкой частицы (движение жидкой частицы в общем виде)
- •4.3. Виды движения жидкости
- •4.3.1. Субстанциональная производная бесконечно малой частицы жидкости
- •1. Случай установившегося движения.
- •2. Случай неустановившегося движения
- •4.3.2. Обобщение понятия субстанциональной производной бесконечно малой частицы жидкости
- •4.3.2.1. Ускорение жидкой частицы
- •4.4. Субстанциональное изменение количественного параметра конечной массы вещества
- •4.5. Интегральная запись законов сохранения материи, количества движения и момента количества движения
- •Закон сохранения материи
- •2. Закон количества движения
- •3. Закон моментов количества движения
- •4.6. Дифференциальное уравнение закона сохранения материи (Уравнение сплошности или неразрывности)
2.3. Силы, действующие в жидкости
2.3.1. Объемные (массовые) силы
Объемными (массовыми) силами назовем силы, которые действуют на все частицы жидкости внутри любого выделенного объема.
Такими силами являются гравитационные (сила тяжести) и инерционная (сила инерции, возникающая при изменении скорости движения жидкости).
Роль этих сил неодинакова. Так:
Сила тяжести оказывает слабое влияние на процесс течения и ею будем пренебрегать.
Пренебрежение силами инерции недопустимо. Т.к. исключение их из уравнений движения жидкости существенно искажает истинную картину течения.
Примечание: инерционные силы не проявляют себя лишь тогда, когда жидкость движется без ускорения.
Поверхностные силы
Поскольку нами принята гипотеза сплошности, то, выделяя некоторый объем ΔV, мы можем говорить о поверхности, отделяющей этот объем от остальной массы жидкости.
По этой поверхности будут распределены каким-то образом силы взаимодействия выделенного объема с окружающими его частями среды или твердыми стенками.
Таким образом, мы вводим понятие поверхностных сил.
Возьмем достаточно малых элемент ΔS этой поверхности, чтобы его можно было считать плоским.
Разложим силу Δ
,
действующую на выделенный элемент, на
две составляющие: нормальную и касательную.
Рассмотрим их по отдельности.
2.3.2.1. Касательные силы
Ранее мы отметили, что жидкость отличается от твердых тел - текучестью. Т.е. если к жидкости приложены силы, то она ни на мгновение не способна их сдерживать и начинает течь. Мера легкости, с которой течет жидкость определяется ее вязкостью.
Введем математическое определение этого важнейшего свойства жидкости.
Вначале введем понятие
напряжения касательных сил в точке. Для
этого перейдем к пределу в отношении
при ΔS → 0 и получим значение напряжения
касательной силы в некоторой точке,
принадлежащей элементарной площадке
ΔS:
(2.8)
Ранее мы отмечали, что касательные напряжения в неподвижной жидкости отсутствуют. Они возникают только при проскальзывании одних частиц среды относительно других, т.е. зависят от относительной скорости скольжения жидкости по поверхности ΔS. Очевидно, что чем больше эта скорость, тем больше касательные усилия и тем заметнее проявляется вязкость жидкости.
Казалось бы в рассматриваемой точке не может быть разности скорости (т.е. скорости скольжения) из-за введения нами гипотезы сплошности и следующей из нее непрерывности изменения скорости жидкости. Однако в различных точках движущейся жидкости скорость различна. Значит, можно говорить об изменении скорости в данной точке, т.е. о производной от скорости, которая и определяет скорость относительного смещения одних точек жидкости относительно других. Поскольку нас интересует взаимное скольжение частиц жидкости вдоль поверхности ΔS, то логично взять производную от касательной составляющей скорости к этой поверхности по нормали к ней. Эта величина и будет определять скорость взаимного скольжения в интересующей нас точке.
Но в какой мере касательные
напряжения зависят от производной
(здесь с – касательная сост. скор. к
рассматр. пов. ΔS)
Ньютон в 1687 году предложил
гипотезу, между величинами
и
существует прямопропорциональная
зависимость. Т.е. касательные напряжения
(напряжение трения) могут вычисляться
в движущихся средах по формуле
(2.9)
где
- коэффициент пропорциональности,
называемый коэффициентом
динамической вязкости.
Т.о., в соответствии с предположением Ньютона, динамическая вязкость определяется исключительно физическими свойствами среды (т.е. эти свойства, в том числе и , могут зависеть от температуры и давления, но не зависят от распределения скоростей в потоке жидкости).
Замечание:
Эта Гипотеза Ньютона является всего лишь предположением, истинность или ложность которого может быть проверена опытом или теоретическими методами других наук.
Проверка гипотезы Ньютона показала, что она справедлива для большинства жидкостей и поэтому уравнение (2.9) трактуется как математическое выражение закона трения, а величину рассматривают как физическую константу, зависящую от свойств среды.
Жидкости, которые подчиняются закону трения Ньютона, называются ньютоновскими.
Однако существует множество жидкостей (расплавы полимеров, коллоидные растворы, суспензии и т.д.), которые закону трения Ньютона не удовлетворяют.
Жидкости, которые не подчиняются закону трения Ньютона, называются неньютоновскими.
Мы в нашем курсе будем рассматривать лишь ньютоновские жидкости.
Для облегчения и удобства решения задач гидромеханики введем модель (понятия) идеальной жидкости.
Под идеальной жидкостью будем понимать воображаемую жидкость, обладающую абсолютной подвижность (т.е. лишенную вязкости), абсолютно несжимаемую, не расширяющуюся с изменением температуры, абсолютно не способную сопротивляться разрыву (растягивающим усилиям).
Оказывается там, где силы вязкости вносят небольшие поправки к основному движению, где нужно выявить главные особенности течения, модель идеальной жидкости чрезвычайно удобна.
Замечание:
Понятие идеальной жидкости не следует смешивать с понятием идеального газа, которое установилось в термодинамике.
В курсе механики жидкости идеальным газом по-прежнему (аналогично термодинамике) называется газ, подчиняющийся уравнению состояния Клапейрона.
