- •1.1 Предмет механики жидкости и ее задачи 4
- •1.2. Математическое моделирование 7
- •3.4.1. Примеры, имеющие самостоятельное значение 56
- •Введение
- •1.1 Предмет механики жидкости и ее задачи
- •1.2. Математическое моделирование
- •2. Основные понятия и определения
- •2.1 Начальные понятия, свойства жидкости
- •Гипотеза сплошности
- •2.2.1. Понятия: плотность, удельный вес, модуль упругости
- •2.3. Силы, действующие в жидкости
- •2.3.1. Объемные (массовые) силы
- •Поверхностные силы
- •2.3.2.1. Касательные силы
- •2.3.2.2. Нормальные силы
- •2.3.2.2.1. Давление
- •Нормальные силы, обусловленные изменением скорости течения
- •Тензор напряжения поверхностной силы
- •3. Векторы и тензоры в гидродинамике
- •3.1. Тензоры
- •3.1.1. Правила действия над тензорами
- •1. Операция транспонирования тензора
- •2. Симметричный тензор
- •4. Умножение тензора на скаляр
- •5. Сложение тензоров
- •6. Умножение вектора на тензор
- •7. Единичный тензор
- •3.2. Гидромеханический смысл некоторых операций векторного анализа
- •3.2.1. Div (дивергенция скорости)
- •3.2.2. Grad р (градиент давления)
- •3.2.3 Rot (ротор скорости)
- •3.3. Символическое исчисление
- •3.3.1. Оператор Гамильтона
- •3.3.2. Правила символического исчисления
- •3.3.3. Примеры, имеющие самостоятельное значение
- •3.3.4. Оператор Лапласса (лапласиан)
- •3.4. Представление дифференциальных операций векторного анализа в декартовой системе координат
- •3.4.1. Примеры, имеющие самостоятельное значение
- •3.5. Преобразование объемных интегралов в поверхностные
- •3.6. Дифференциальные тензоры
- •3.7. Безвихревые и соленоидальные векторные поля
- •4. Основные уравнения движения жидкости
- •4.1. Способы описания движения жидкости
- •1. Подход Лагранжа
- •2. Подход (способ) Эйлера
- •4.2. Кинематика жидкой частицы (движение жидкой частицы в общем виде)
- •4.3. Виды движения жидкости
- •4.3.1. Субстанциональная производная бесконечно малой частицы жидкости
- •1. Случай установившегося движения.
- •2. Случай неустановившегося движения
- •4.3.2. Обобщение понятия субстанциональной производной бесконечно малой частицы жидкости
- •4.3.2.1. Ускорение жидкой частицы
- •4.4. Субстанциональное изменение количественного параметра конечной массы вещества
- •4.5. Интегральная запись законов сохранения материи, количества движения и момента количества движения
- •Закон сохранения материи
- •2. Закон количества движения
- •3. Закон моментов количества движения
- •4.6. Дифференциальное уравнение закона сохранения материи (Уравнение сплошности или неразрывности)
4.3. Виды движения жидкости
Представим себе, что мы последовательно фотографируем поток жидкости в некоторой области в различные моменты времени.
Если после проявления фотографий будет обнаружено, что они ничем не отличаются одна от другой, то имеем установившееся движение. Т.о. в установившемся времени в каждой точке пространства все параметры (такие как давление, скорость, температура, плотность и др.) движущейся жидкости остаются неизменными.
Если фотографии будут отличаться друг от друга, то имеем неустановившееся движение. При таком движении все параметры жидкости меняются не только от одной точки пространства к другой, но и в каждой точке с течением времени.
Замечание:
Установившееся движение – это предельный случай неустановившегося. Т.е. такое движение к которому придет неустановившееся движение если прекратить изменение внешних воздействий.
4.3.1. Субстанциональная производная бесконечно малой частицы жидкости
Рассмотрим математические аспекты изучения установившихся и неустановившихся движений.
Пусть нас интересует некоторый параметр φ, характеризующий элементарный объем жидкости ΔV (это может быть давление, температура, скорость и т.д.).
Подсчитаем изменение этого параметра за малый промежуток времени Δt.
В соответствии с общими правилами дифференциального исчисления можем записать равенство
(4.11)
в котором символ D употреблен вместо обычно применяемого знака дифференциала d, для того, чтобы подчеркнуть то обстоятельство, что производная относится к одной и той же массе жидкости, заключенной внутри объема ΔV.
Такая производная называется субстанциональной производной (от слова субстанция – вещество). Ее еще называют либо полной производной, либо вещественной, либо эйлеровой.
Для установившегося и неустановившегося движения эта производная вычисляется различным образом.
1. Случай установившегося движения.
Пусть за время Δt
частица жидкости переместится вдоль
своей траектории на элемент длины Δ
и попадет в другую точку пространства,
где параметр φ отличается от исходного
значения на величину Δφ.
Замечание:
По определению при установившемся течении в каждой отдельно взятой точке ни один параметр не меняет своего значения с течением времени. Поэтому приращение Δφ будем рассматривать просто как следствие различных положений объема ΔV в пространстве вне зависимости от времени его движения.
Т.к. одна точка от другой в рассматриваемом случае отстоит на расстоянии Δ , то справедливо очевидное равенство
(4.12)
Приравняв формулы (4.11) и
(4.12), поделив на время Δt
и перейдя к пределу при Δt
→ 0, получим искомую формулу для
субстанционарной производной для
установившегося движения:
(4.13)
где
- скорость движения частицы.
2. Случай неустановившегося движения
Рассмотрим формулу (4.12). Это равенство учитывает различие параметров потока в двух соседних точках пространства в один и тот же момент времени.
При неустановившемся движении за время Δt, пока объем ΔV перемещается из одной точки в другую, параметр φ изменится в сравнении с тем его значением, которое он имел бы при установившемся движении.
Это дополнительное приращение может быть подсчитано по формуле
(4.14)
Т.о. полное изменение параметра φ составит
(4.15)
Приравняв формулы (4.15) и (4.11), поделив на время Δt и перейдя к пределу при Δt → 0, получим искомую формулу для субстанционарной производной при неустановившемся режиме течения жидкости
(4.16)
где
- называется локальной (местной)
производной,
и
– называется конвективной производной,
- скорость движения частицы.
Замечание:
Символически равенство (4.16) можно записать
здесь точки, стоящие за знаком приращения, заменяют написание рассматриваемого параметра и служат для общности рассуждений.
Символ
представляет собой производную по
направлению скорости движения частицы.
Это направление, при одномерной постановке
задачи, всегда считается известным,
поэтому и скорость движения частицы и
рассматривается как скалярная величина.
В условиях сложного пространственного движения (сплошной среды) жидкости данное представление о субстанциональной производной необходимо расширить и обобщить.
