- •41.Тензометрические полупроводниковые чувствительные элементы. Схемы включения тензорезисторов.
- •42.Тензорезистивные кремниевые датчики. Характеристики и параметры мостовых тензорезисторных преобразователей давления.
- •43.Градуировка, балансировка и компенсация температурной погрешности мостовой схемы тензопреобразователей.
- •47. Магнитоупругие преобразователи (муп). Принцип действия и конструкция муп. Схемы включения муп. Погрешность муп. Магнитоупругий датчик измерения силы.
- •48. Гальваномагниторекомбинационные преобразователи.
- •49. Датчики Виганда.
- •51.Эффект Холла. Материалы для изготовления датчиков Холла (дх). Основные параметры дх и их связь со свойствами полупроводника.
- •52. Технология изготовления дх.
- •53.Магниторезистивные преобразователи. Основные параметры магниторезисторов.
- •54.Технология изготовления магниторезисторов.
- •55.Применение гальваномагнитных преобразователей в средствах автоматизации.
- •56.Магнитодиодный эффект. Параметры магнитодиодов.
- •57.Конструкция и технология изготовления магнитодиодов. «Торцевые» и планарные магнитодиоды.
- •59.Основные задачи температурных измерений. Физические основы температурных измерений.
- •60.Погрешности температурных измерений контактными датчиками.
- •61.Полупроводниковые терморезисторы (тр). Основные характеристики тр: температурная зависимость сопротивления, вольт-амперные характеристики, инерционность, стабильность и срок службы.
- •62.Тр с отрицательным и положительным ткс. Кремниевые датчики температуры.
- •63.Применение датчиков температуры: медный, платиновый и марганцевый термометры сопротивления.
- •64.Основные задачи измерений тепловых потоков. Классификация датчиков теплового потока (дтп). Физические модели «тепловых» дтп.
- •65.Тонкопленочные дтп, калориметрические дтп
- •66.Градиентные (с продольным и поперечным градиентом) дтп
- •67. Бесконтактные измерители температуры. Тепловые фотоприемники. Применение пироэлектриков.
- •68. Биосенсоры. Применение биосенсоров: биосенсоры на основе бактерий, микроорганизмов, биологических тканей. Проблемы и перспективы развития.
- •69. Датчики газового состава. Электродные реакции.
- •70.Электрохимические методы анализа: кондуктометрия, потенциометрия, вольтамперометрия, амперометрия, кулонометрия.
- •71. Химические измерения: кислотность, окислительно- восстановительный потенциал, проводимость.
- •73.Особенности «интеллектуальных» датчиков физических величин. Функциональные возможности и требования, предъявляемые к «интеллектуальным» датчикам.
- •74.Микропроцессорные модули для интеллектуальной обработки информации. Измерительный канал «интеллектуальных» датчиков.
- •75.Основные критерии выбора микроконтроллера для «интеллектуального» датчика.
- •76. Универсальный интерфейс преобразователя.
- •77.Стандартизация интерфейсов «интеллектуальных» датчиков (семейство ieee р 1451). Коррекция ошибок в «интеллектуальных» датчиках.
- •79.Исполнение датчиков в зависимости от воздействия климатических факторов внешней среды.
- •80.Исполнение датчиков в зависимости от степени защиты от воздействия твердых тел (пыли) и пресной воды.
- •81. Исполнение датчиков в зависимости от устойчивости к воздействию синусоидальной вибрации.
68. Биосенсоры. Применение биосенсоров: биосенсоры на основе бактерий, микроорганизмов, биологических тканей. Проблемы и перспективы развития.
Наибольшее развитие имеют аналитические устройства, использующие в качестве селектирующего элемента биомакромолекулы – биосснсоры. Большинство биосенсоров ориентировано на анализ биологических жидкостей. Действительно, в крови находятся тысячи различных соединений. Задача заключается в том, чтобы быстро и эффективно определить концентрацию нужного соединения, например глюкозы. Любой биосенсор состоит из двух функциональных элементов: биодатчика, содержащего биоселектирующий материал, выполняющего функцию биологического элемента распознавания, преобразуя определяемый компонент, а точнее, информацию о химических связях в физическое или химическое свойство или сигнал, и физического датчика, преобразующего любой генерируемый сигнал (концентрация ионов, масса, цвет и т.д.) Простейшая конструкция ферментного биосенсора реализуется при условии, когда или субстрат или продукг ферментативной реакции электрохимически активен, т.е. способен быстро (и желательно обратимо) окисляться или восстанавливаться на электроде при наложении на него соответствующего потенциала. Под термином «биосенсор» следует понимать устройство, в котором чувствительный слой, содержащий биологический материал: ферменты, ткани, бактерии, дрожжи, антигены / антитела, липо- сомы, органеллы, рецепторы, ДНК, непосредственно реагирующий на присутствие определяемого компонента, генерирует сигнал, функционально связанный с концентрацией этого компонента. Самым представительным примером является амперометрический биосенсор на основе иммобилизованной глюкозоксидазы для определения сахара в крови. В качестве физического датчика в нем использован так называемый электрод Кларка. Схема функционирования биосснсора на глюкозу в принципе типична и для других амперометрических биосенсоров с аналогичным преобразователем. Преимущество данного типа биосснсора состоит в его высокой селективности. Избирательность таких биосенсоров определяется высокой специфичностью глюкозоксидазы и природой электрохимической реакции, в которой участвуют компоненты ферментативного процесса. В целом класс ферментов - оксидаз является высокоспецифичным по отношению к определяемым компонентам. Системы же на основе небиологического преобразователя, напротив, не столь избирательны. Однако имеются ограничения по применению данной конструкции биосснсора, обусловленные влиянием кислорода и других посторонних веществ, способных проникать через мембрану. Многие ферменты дороги и быстро теряют свою активность, поэтому использование биосенсоров на их основе не может быть экономически целесообразным. В этой связи применение бактерий, микроорганизмов и биологических тканей различного происхождения более предпочтительно, поскольку отпадает необходимость в предварительном получении и очистке ферментов. К существенному недостатку таких биосенсоров можно отнести низкую селективность определения вследствие того, что клетки живых организмов фактически являются источником самых разнообразных ферментов. Еще один пример конструкции биосенсорного устройства относится к ферментному электроду на основе микроорганизмов - дрожжей, помещаемых между двумя пористыми мембранами. Биосенсор на основе иммобилизованных дрожжей и кислородного электрода позволяет определять этанол и метанол в промышленных стоках. Концепция распознавания определяемого вещества с помощью иммобилизованного биоматериала оказалась весьма плодотворной [88]. Некоторые биосенсоры уже получают распространение для индивидуального использования в домашних аптечках (чаще всего для определения сахара в крови). Если иметь в виду все разнообразие ферментов, присутствующих и действующих в живом организме и являющихся потенциальными биологическими преобразователями, то следует отметить, что существующее число конструкций биосснсоров может быть увеличено в десятки и даже сотни раз. Биосенсоры получают распространение в биотехнологии. Однако здесь встречаются трудности, связанные с невысокой термической устойчивостью предложенных устройств, приводящей к дезактивации биослоя. Для увеличения срока службы биосенсоров в обозначенных выше условиях можно использовать ферменты, выделенные из термофильных бактерий и одноклеточных водорослей - микроорганизмов, устойчивых к действию высоких температур. Определенные трудности представляют собой также проблемы градуировки биосенсоров и надежности их показаний. Для повышения надежности предлагается использовать мультисенсорную систему, состоящую из ряда биочипов. Для получения надежных данных производится расчет необходимого числа таких датчиков. Некоторые биосенсоры работают по принципу «да-нет», что приемлемо, когда решается вопрос о присутствии сверхмалых количеств высокотоксичных веществ в объектах окружающей среды.
