- •Глава 6. Субстраты для выращивания растений по малообъемной технологии
- •Глава 7. Питание растений при малообъемной технологии
- •Глава 8. Технология выращивания огурца в защищенном грунте
- •Глава 9. Технология выращивания томата в закрытом грунте
- •Глава 10. Технология выращивания перца, баклажана, зеленных культур
- •Глава 11. Система защиты растений от болезней и вредителей в теплицах
- •Глава 12. Технология выращивания цветочных культур в защищенном грунте
- •Факторы среды выращивания 407
- •Глава 13. Современные системы орошения в растениеводстве открытого грунта
- •Глава 14. Передовой опыт выращивания овощных культур у ведущих предприятиях Украины
- •Глава 15. Опыт работы зарубежных фирм в хозяйствах Украины
- •1.1 Развитие прогрессивных методов выращивания растений
- •1.2 Биологические особенности овощных культур
- •1.2.3 Особенности различных овощных культур
- •1.2.4 Периоды выращивания
- •1.3. Способы выращивания
- •1.4 Пищевая и целебная ценность овощей, выращиваемых в закрытом грунте
- •1.4.1 Зеленные культуры
- •2.1 Классификация теплиц
- •2.2 Типовые проекты теплиц
- •2.3 Строительство и реконструкция теплиц
- •2.4 Теплицы для специализированных хозяйств
- •2.5 Теплицы для овощеводов-любителей ооо "агрисовгаз"
- •2.6 Теплицы для небольших фермерских хозяйств производства ооо "агрисовгаз"
- •2.7 Посевной и посадочный материал овощных культур
- •Вегетационного периода
- •2.8 Основные культурообороты для тепличных сооружений
- •3.1 Понятие о комплексе внешних условий
- •3.2 Роль микроклимата в формировании урожая
- •3.3 Световой режим
- •3.4 Электродосвечивание
- •3.5 Тепловой режим
- •3.6 Режим влажности субстрата и воздуха
- •3.7 Воздушно-газовый режим
- •4.1 Требования к тепличным грунтам
- •4.2 Классификация тепличных грунтов
- •4.3 Свойства тепличных грунтов
- •4.4 Режим питания овощных культур при выращивании на различных грунтах
- •4.5 Известкование почвы, приготовление компостов, внесение удобрений
- •4.6 Грунты для рассады
- •5.1 Методы гидропоники (по тараканову г. И., 1982)
- •5.1.1 Агрегатопоника
- •5.1.2 Водная культура
- •5.1.3 Хемопоника
- •5.1.4 Ионитопоника
- •5.1.5 Аэропоника
- •5.2 Способы подачи питательного раствора при гравийной культуре
- •5.3 Субстраты для выращивания растений методом гравийной культуры
- •5.4 Питательные растворы для гравийной культуры и их корректировка
- •5.5 Концентрация питательного раствора
- •5.6 Кислотность питательного раствора
- •5.7 Питательные растворы для рассады при гравийной культуре
- •5.8 Питательные растворы для огурца на щебне
- •5.9 Питательные растворы для томата на щебне
- •5.10 Контроль за составом питательного раствора на щебне
- •6.1 Верховой торф
- •6.2 Минеральная вата
- •6.3 Перлит
- •6.4 Цеолит
- •6.5 Новый тепличный субстрат - кокос
- •6.6 Основная заправка торфяного и торфоперлитового субстратов
- •7.1 Роль и значение элементов питания
- •7.4 Оптимизация условий питания тепличных растений
- •7.2 Требования к качеству воды для капельного полива, методика корректировки питательного раствора в зависимости от состава воды
- •7.3 Питательные растворы
- •7.5 Некорневое питание
- •7.6 Контроль питания растений по химическому составу листьев
- •7.7 Определение обеспеченности питательными элементами растения по внешнему виду
- •Некрозы
- •Ткань не некротическая
- •Повреждение местное. Ткань некротическая
- •8.1. Особенности технологии
- •8.1 Типы цветков
- •8.1.1 Гибриды огурца для выращивания в зимне-весенней культуре
- •8.1.2 Принципы подбора гибридов огурца
- •8.2 Грунтовая культура огурца в теплицах
- •8.3 Схемы формирования растений огурца в защищенном грунте
- •5. Формирование партено- карпических гибридов огурца в летне-осенней культуре.
- •8.3.1 Опыление пчелами
- •8.3.2 Питание и полив растений огурца на тепличных грунтах
- •8.3.3 Сбор урожая
- •8.4 Технологии выращивания партенокарпического огурца в летне-осеннем обороте
- •8.5 Выращивание огурца малообъемным
- •8.6 Особенности технологии выращивания огурца на минеральной вате
- •8.6.2 Температура
- •8.6.4 Полив
- •8.6.5 Электропроводность и рН раствора
- •8.6.6 Корневая система
- •8.6.7 Контроль питания
- •8.7 Особенности технологии тепличных культур на кокосовом субстрате
- •9.1 Гибриды томата для защищенного грунта
- •9.1.1. Гибриды супердетерминантного типа роста
- •9.3 Выращивание рассады томата
- •9.4 Культура томатов на малообъемных торфяных и торфоперлитных субстратах
- •9.5 Культура томатов на малообъемных минераловатных субстратах
- •9.5.1 Планирование круглогодичного выращивания томатов
- •9.5.2 Выращивание рассады
- •9.5.3. Посадка на постоянное место
- •9.5.4 Климат теплиц
- •9.5.5 Уход за растениями
- •1. Ночной период.
- •2. Утренний период.
- •3. Дневное время.
- •4. Вечерний период.
- •9. 6. Особенности технологии выращивания томатов перспективного гибрида "алькасар" TmC5f2 в продленном обороте
- •9.7. Культура томата на цеолитовом малообъемном субстрате
- •9.8. Использование шмелей для опыления томата
- •10.1 Технология выращивания перца
- •10.1.1. Гибриды и сорта перца сладкого
- •10.1.2 Выращивание рассады
- •10.1.4 Выращивание растений перца
- •10.2 Технология выращивания баклажана
- •10.2.2 Выращивание рассады
- •10.2.5 Периоды выращивания
- •10.2.6 Формировка растений и развитие плодов
- •10.3 Конвейерное выращивание зеленных культур в зимних теплицах способом малообъемной гидропоники
- •10.3.1 Технология конвейерного выращивания салата способом малообъемной культуры в кассетах
- •Иммунологический метод.
- •11.1 Карантинные, профилактические и агротехнические методы защиты
- •11.2 Химический метод защиты растений
- •Механизмы действия препаратов
- •11.3 Иммунологический метод
- •11.4 Интегрированные системы защиты тепличных культур
- •11.5 Биологический метод
- •11.5.1 Биологические методы борьбы с вредителями и болезнями
- •11.5.2 Использование желтых клеевых ловушек (жлк)
- •11.6 Болезни огурца и томата 11.6.1 вирусные болезни огурца
- •Заболевания огурцов передаваемые семенами
- •Заболевания огурцов, распространяемые тлями
- •11.6.2 Грибные болезни огурца
- •11.6.3 Вирусные заболевания томата
- •Заболевания томатов передаваемые семенами
- •Заболевания томатов, передаваемые тлями
- •11.6.4. Бактериальные заболевания томатов
- •11.6.5 Физиологические болезни томата
- •11.7 Вредители огурца и томата
- •11.7.1. Видовой состав тлей, поражающих растения овощных культур в защищенном грунте
- •11.8 Вредители и болезни перца
- •11.9 Вредители и болезни баклажана
- •Физиологические заболевания
- •11.10 Вредители и болезни салата
- •Вредители.
- •11.11 Техника безопасности при работе в культивационных сооружениях
- •12.1 Розы выгоночные
- •12.1.1 Виды посадочного материала
- •12.1.2 Теплицы для культуры роз
- •12.1.2.1 Искусственное освещение
- •12.1.2.2 Обогрев теплицы
- •12.1.3 Культура роз на малообъемных субстратах
- •12.1.4 Физиологические требования растений роз
- •12.1.5 Особенности роста надземной части растений
- •12.1.7 Физиологические особенности развития роз
- •12.1.8 Усвоение питательных веществ
- •12.1.9 Физиологические расстройства
- •12.1.10 Удобрение роз в процессе выращивания
- •12.1.11 Болезни роз
- •12.1.12 Вредители роз
- •12.2 Гвоздика ремонтантная
- •12.2.1 Факторы среды выращивания
- •12.2.2 Грунты и субстраты
- •12.2.3 Удобрение
- •12.2.5 Пасынкование цветущих побегов
- •12.2.6 Схема выращивания и густота посадки гвоздик
- •12.2.7 Сроки фотопериодических подсветок
- •12.2.8 Другие агроприемы, используемые при управляемой технологии
- •12.2.9 Срез цветов
- •12.2.10 Защита растений гвоздики
- •12.2.10.1 Болезни гвоздики
- •12.2.10.2 Вредители гвоздики
- •12.3 Технология выращивания хризантем (метод управляемого цветения)
- •12.3.1 Факторы среды выращивания
- •12.3.3 Сорта хризантем
- •12.3.4 Выращивание посадочного материала
- •12.3.5 Выращивание хризантем
- •12.3.6 Защита хризантем от вредителей и болезней Вирусные болезни.
- •Бактериальные болезни.
- •Грибковые болезни.
- •13.1 Применение капельного полива с фертигацией
- •13.1.1 Почему необходима фертигация?
- •13.2 Современные системы подачи удобрений
- •13.3 Методы фертигации
- •13.4 Особенности удобрения
- •13.5 Доступность элементов питания в почве
- •13.7 Плодовые культуры
- •13.8 Виноград
- •13.9 Ягодные культуры
- •13.10 Распределение удобрений по периодам выращивания
- •13.10.1 Агрохимический анализ почвы
- •12.10.2 Программирование фертигации
- •13.10.3 Поливная норма
- •13.10.4 Определение наименьшей влагоемкости почвы
- •Методы определения поливной нормы
- •12.10.5 Расчет поливной нормы
- •13.12 Эксплуатация капельных оросительных систем
- •13.12.1 Показатель рН раствора удобрений
- •13.12.2 Особенности ирригации культур
- •13.13 Удобрения. Химические аспекты
- •13.14 Регулирование работы оборудования для фертигации
- •13.15 Примеры расчета фертигации
- •Учет факторов плодородия почвы на томате
- •Учет факторов плодородия на винограде
- •14.2 Сооо "крымтеплица"
- •Размещение субстрата
- •Посадка
- •Формирование дополнительного стебля
- •Период сентябрь-октябрь
- •Конец культурооборота
- •14.3 Открытое акционерное общество "комбинат "тепличный" броварского района киевской области
- •Высадка растений на постоянное место
- •Организация труда в теплице
- •Формировка растений
- •14.4 Гп нип агрокомбинат "пуща-водица"
- •14.4.1 Современное производство овощей в агрокомбинате
- •14.4.3 Технология выращивания шампиньона
- •15.1 Голландская фирма ats
- •15.2 A.I.K. Ltd - международные сельскохозяйственные проекты
- •Инженерный сектор
- •Агрономический сектор
- •15.3 Голландская фирма ревахо
- •Защищенный грунт
7.3 Питательные растворы
ДЛЯ ВЫРАЩИВАНИЯ ОВОЩНЫХ КУЛЬТУР
СПОСОБОМ МАЛООБЪЕМНОЙ ГИДРОПОНИКИ
В настоящее время многие тепличные хозяйства перешедшие на выращивание растений методом малообъемной гидропоники, применяют в качестве субстрата торф, торф + перлит, кокос или минеральную вату. При использовании этой высокоэффективной технологии важно четко
соблюдать рекомендации по питанию растений, так как в условиях ограниченного корневого объема нарушение режимов полива может привести к значительным потерям урожая. Особое внимание должно уделяться сбалансированности питательных (рабочих) растворов, которые рассчитываются на основе стандартных питательных растворов.
Используя стандартные питательные растворы и таблицы можно рассчитать состав раствора в зависимости от качества воды. Состав стандартных питательных растворов приведен в молях.
Международное определение значения моля следующее: Моль — это количество вещества в системе, которое содержит столько структурных единиц, сколько атомов углерода содержится в 0,012 кг углерода — 12. Элементарные структурные единицы должны быть обозначены как атомы, молекулы, ионы, электроны, другие частицы или специфические группы таких частиц (Aylward, Findley 1974).
Атомные веса, необходимые для расчета приведены в табл. 7.6. Данные приводятся с округлением до десятых, что достаточно для расчетов.
Рассмотрим составы питательных растворов для выращивания различных овощных культур на минеральной вате, разработанные на основе многолетних исследований в Научно-исследовательском центре по культурам защищенного грунта (Наалдвайк, Нидерланды).
Бак А: вносится Ca(NO3)2 и другие азотнокислые удобрения. Общее количество KNO3, KMgNO3 , NH4 NO3, CO(NH2)2, необходимое для внесения в раствор можно пропорционально распределить в бак А и бак В.
Бак В: для фосфорнокислых и сернокислых удобрений, а также некоторых азотнокислых удобрений. В связи с использованием комплексных поли-хелатных удобрений в форме ЕДТА, показатель рН концентрированного раствора до внесения полихелатов или сразу после внесения в бак комплексных удобрений с помощью азотной или ортофосфорной кислот доводится до показателя рН 4-5.
Используемые для составления питательных растворов удобрения приведены в табл: 7.7, 7.8, 7.9, 7.10, 7.11.
Если количество азотнокислых солей превышает остальные соли, то часть их, исключая Ca(NO3)2, распределяется между баками А и В таким образом, чтобы общее количество солей в баках было примерно равным.
Кроме вышеназванных удобрений можно использовать и сложные удобрения различных фирм.
Расчет, питательных растворов обычно проводят в 2 этапа. Первый этап включает расчет основных элементов, которые, как правило, присутствуют в качестве одного или нескольких компонентов в удобрениях. Так, при добавлении KNO3 для повышения уровня К необходимо учитывать вносимый N.
Второй этап расчетов касается микроэлементов. Это значительно проще, поскольку другие компоненты в удобрениях находятся в очень малых количествах.
Пример расчета основных элементов питательного раствора приведен в табл. 7.12. Это расчет стандартного раствора для огурца при условии отсутствия элементов питания в используемой воде. Количество удобрений, рассчитанных по табл. 7.12, выражены в мМ/л, и их можно легко перевести в мг/л для готового раствора или кг/м3 для 100-кратного концентрированного маточного раствора. Пересчет приведен в табл. 7.13.
Расчет микроудобрений приведен в табл. 7.14. Значения в 3-4 колонках получены из расчета: 10 мкМ Fe = 10 х 932 мкг Fe — ДТРА (6%) = 9,32 мг Fe —
ДТРА (6%).
Таблица 7.12
100-кратный концентрированный маточный раствор в 1 м3 содержит 10 мкМ х 103 м3 х 932 х 10~б г/мкМ х 102 = 932 г/м3. Аналогично рассчитываются остальные микроэлементы. Следует иметь ввиду, что 1 М боракса соответствует 4 MB, т.о. 20 мкМ В/л = 1/4 х 20 х 381,2 мк М/л = 1,91 мг/л.
Существуют другие удобрения, которые можно использовать; выбор зависит от технических показателей. Удобрения обычно разделяют на 2 бака, называемые А и В. В баке А не должно содержаться фосфатов и сульфатов, а в баке В — не должно быть удобрений, содержащих Са во избежание осаждения фосфатов Са или сульфатов Са. Часто питательные растворы корректируют по НСО3, Са ++ и Mg ++, т.к. эти ионы входят в состав многих типов воды. Для нейтрализации НСО3~ добавляют эквивалентные количества Н3О. Обычно, когда вода содержит НСО3", эквивалентные количества Са++ и Mg ++ также присутствуют, и аналогичные количества этих ионов вычитаются из стандартного раствора. В табл. 7.15 дается пример расчета раствора для культуры томата на минеральной вате. При расчете учитываются 3 мМ НСО3, 1 мМ Са++ и 0,5 мМ Mg++, содержащиеся в 1 л воды.
Результаты, рассчитанные в табл. 7.15, пересчитывают в мг/л для готового раствора или в кг/м3 для 100-кратного маточного. Количества удобрений, необходимых по расчету табл. 15, приведены в табл. 16. Использованы растворы кислот: 75% для фосфорной, 65% для азотной, и таким образом использованы делимые от 0,75 и 0,65.
Для культур томата, огурца, сладкого перца и баклажана 100-кратные концентрированные маточные растворы с коррекцией на ионы воды приведены ранее. С их использованием нет необходимости в большинстве случаев рассчитывать питательные растворы для каждого типа воды (табл. 7.18—7.29).
При приготовлении питательных растворов особое внимание следует уделять соотношению между ионами питательных элементов на различных этапах роста растений. Поддержание правильной пропорции между ионами более важно, чем собственно их концентрация. Так, состав растворов для насыщения матов отличается от растворов, используемых на других фазах роста
растений, пониженным содержанием одновалентных катионов (калий и аммоний) и повышенным содержанием бора и двухвалентных катионов (кальций, магний). Это обусловлено тем, что растения быстрее усваивают одновалентные ионы и поэтому концентрация двухвалентных ионов в корнеобита-емой среде должна быть выше, чем в питательном растворе. Таким образом, состав раствора для насыщения матов максимально приближен к оптимальному для прикорневой зоны.
Схема сравнения доступности питательных элементов в зоне корневой системы при малообъемных технологиях, основанных на капельном поливе показано на рис. 7.1.
Соотношения N : К и К : Са в питательных растворах различаются в зависимости от фазы роста растений.
Поглощение растениями элементов питания и накопление их в малообъемных субстратах могут, в значительной степени, изменить количества этих элементов. Поэтому необходимо один раз в месяц проводить агрохимический анализ. Кроме того, регулярно, несколько раз в неделю, контролируют уровень электропроводимости и кислотности в малообъемном субстрате.
