- •Глава 6. Субстраты для выращивания растений по малообъемной технологии
- •Глава 7. Питание растений при малообъемной технологии
- •Глава 8. Технология выращивания огурца в защищенном грунте
- •Глава 9. Технология выращивания томата в закрытом грунте
- •Глава 10. Технология выращивания перца, баклажана, зеленных культур
- •Глава 11. Система защиты растений от болезней и вредителей в теплицах
- •Глава 12. Технология выращивания цветочных культур в защищенном грунте
- •Факторы среды выращивания 407
- •Глава 13. Современные системы орошения в растениеводстве открытого грунта
- •Глава 14. Передовой опыт выращивания овощных культур у ведущих предприятиях Украины
- •Глава 15. Опыт работы зарубежных фирм в хозяйствах Украины
- •1.1 Развитие прогрессивных методов выращивания растений
- •1.2 Биологические особенности овощных культур
- •1.2.3 Особенности различных овощных культур
- •1.2.4 Периоды выращивания
- •1.3. Способы выращивания
- •1.4 Пищевая и целебная ценность овощей, выращиваемых в закрытом грунте
- •1.4.1 Зеленные культуры
- •2.1 Классификация теплиц
- •2.2 Типовые проекты теплиц
- •2.3 Строительство и реконструкция теплиц
- •2.4 Теплицы для специализированных хозяйств
- •2.5 Теплицы для овощеводов-любителей ооо "агрисовгаз"
- •2.6 Теплицы для небольших фермерских хозяйств производства ооо "агрисовгаз"
- •2.7 Посевной и посадочный материал овощных культур
- •Вегетационного периода
- •2.8 Основные культурообороты для тепличных сооружений
- •3.1 Понятие о комплексе внешних условий
- •3.2 Роль микроклимата в формировании урожая
- •3.3 Световой режим
- •3.4 Электродосвечивание
- •3.5 Тепловой режим
- •3.6 Режим влажности субстрата и воздуха
- •3.7 Воздушно-газовый режим
- •4.1 Требования к тепличным грунтам
- •4.2 Классификация тепличных грунтов
- •4.3 Свойства тепличных грунтов
- •4.4 Режим питания овощных культур при выращивании на различных грунтах
- •4.5 Известкование почвы, приготовление компостов, внесение удобрений
- •4.6 Грунты для рассады
- •5.1 Методы гидропоники (по тараканову г. И., 1982)
- •5.1.1 Агрегатопоника
- •5.1.2 Водная культура
- •5.1.3 Хемопоника
- •5.1.4 Ионитопоника
- •5.1.5 Аэропоника
- •5.2 Способы подачи питательного раствора при гравийной культуре
- •5.3 Субстраты для выращивания растений методом гравийной культуры
- •5.4 Питательные растворы для гравийной культуры и их корректировка
- •5.5 Концентрация питательного раствора
- •5.6 Кислотность питательного раствора
- •5.7 Питательные растворы для рассады при гравийной культуре
- •5.8 Питательные растворы для огурца на щебне
- •5.9 Питательные растворы для томата на щебне
- •5.10 Контроль за составом питательного раствора на щебне
- •6.1 Верховой торф
- •6.2 Минеральная вата
- •6.3 Перлит
- •6.4 Цеолит
- •6.5 Новый тепличный субстрат - кокос
- •6.6 Основная заправка торфяного и торфоперлитового субстратов
- •7.1 Роль и значение элементов питания
- •7.4 Оптимизация условий питания тепличных растений
- •7.2 Требования к качеству воды для капельного полива, методика корректировки питательного раствора в зависимости от состава воды
- •7.3 Питательные растворы
- •7.5 Некорневое питание
- •7.6 Контроль питания растений по химическому составу листьев
- •7.7 Определение обеспеченности питательными элементами растения по внешнему виду
- •Некрозы
- •Ткань не некротическая
- •Повреждение местное. Ткань некротическая
- •8.1. Особенности технологии
- •8.1 Типы цветков
- •8.1.1 Гибриды огурца для выращивания в зимне-весенней культуре
- •8.1.2 Принципы подбора гибридов огурца
- •8.2 Грунтовая культура огурца в теплицах
- •8.3 Схемы формирования растений огурца в защищенном грунте
- •5. Формирование партено- карпических гибридов огурца в летне-осенней культуре.
- •8.3.1 Опыление пчелами
- •8.3.2 Питание и полив растений огурца на тепличных грунтах
- •8.3.3 Сбор урожая
- •8.4 Технологии выращивания партенокарпического огурца в летне-осеннем обороте
- •8.5 Выращивание огурца малообъемным
- •8.6 Особенности технологии выращивания огурца на минеральной вате
- •8.6.2 Температура
- •8.6.4 Полив
- •8.6.5 Электропроводность и рН раствора
- •8.6.6 Корневая система
- •8.6.7 Контроль питания
- •8.7 Особенности технологии тепличных культур на кокосовом субстрате
- •9.1 Гибриды томата для защищенного грунта
- •9.1.1. Гибриды супердетерминантного типа роста
- •9.3 Выращивание рассады томата
- •9.4 Культура томатов на малообъемных торфяных и торфоперлитных субстратах
- •9.5 Культура томатов на малообъемных минераловатных субстратах
- •9.5.1 Планирование круглогодичного выращивания томатов
- •9.5.2 Выращивание рассады
- •9.5.3. Посадка на постоянное место
- •9.5.4 Климат теплиц
- •9.5.5 Уход за растениями
- •1. Ночной период.
- •2. Утренний период.
- •3. Дневное время.
- •4. Вечерний период.
- •9. 6. Особенности технологии выращивания томатов перспективного гибрида "алькасар" TmC5f2 в продленном обороте
- •9.7. Культура томата на цеолитовом малообъемном субстрате
- •9.8. Использование шмелей для опыления томата
- •10.1 Технология выращивания перца
- •10.1.1. Гибриды и сорта перца сладкого
- •10.1.2 Выращивание рассады
- •10.1.4 Выращивание растений перца
- •10.2 Технология выращивания баклажана
- •10.2.2 Выращивание рассады
- •10.2.5 Периоды выращивания
- •10.2.6 Формировка растений и развитие плодов
- •10.3 Конвейерное выращивание зеленных культур в зимних теплицах способом малообъемной гидропоники
- •10.3.1 Технология конвейерного выращивания салата способом малообъемной культуры в кассетах
- •Иммунологический метод.
- •11.1 Карантинные, профилактические и агротехнические методы защиты
- •11.2 Химический метод защиты растений
- •Механизмы действия препаратов
- •11.3 Иммунологический метод
- •11.4 Интегрированные системы защиты тепличных культур
- •11.5 Биологический метод
- •11.5.1 Биологические методы борьбы с вредителями и болезнями
- •11.5.2 Использование желтых клеевых ловушек (жлк)
- •11.6 Болезни огурца и томата 11.6.1 вирусные болезни огурца
- •Заболевания огурцов передаваемые семенами
- •Заболевания огурцов, распространяемые тлями
- •11.6.2 Грибные болезни огурца
- •11.6.3 Вирусные заболевания томата
- •Заболевания томатов передаваемые семенами
- •Заболевания томатов, передаваемые тлями
- •11.6.4. Бактериальные заболевания томатов
- •11.6.5 Физиологические болезни томата
- •11.7 Вредители огурца и томата
- •11.7.1. Видовой состав тлей, поражающих растения овощных культур в защищенном грунте
- •11.8 Вредители и болезни перца
- •11.9 Вредители и болезни баклажана
- •Физиологические заболевания
- •11.10 Вредители и болезни салата
- •Вредители.
- •11.11 Техника безопасности при работе в культивационных сооружениях
- •12.1 Розы выгоночные
- •12.1.1 Виды посадочного материала
- •12.1.2 Теплицы для культуры роз
- •12.1.2.1 Искусственное освещение
- •12.1.2.2 Обогрев теплицы
- •12.1.3 Культура роз на малообъемных субстратах
- •12.1.4 Физиологические требования растений роз
- •12.1.5 Особенности роста надземной части растений
- •12.1.7 Физиологические особенности развития роз
- •12.1.8 Усвоение питательных веществ
- •12.1.9 Физиологические расстройства
- •12.1.10 Удобрение роз в процессе выращивания
- •12.1.11 Болезни роз
- •12.1.12 Вредители роз
- •12.2 Гвоздика ремонтантная
- •12.2.1 Факторы среды выращивания
- •12.2.2 Грунты и субстраты
- •12.2.3 Удобрение
- •12.2.5 Пасынкование цветущих побегов
- •12.2.6 Схема выращивания и густота посадки гвоздик
- •12.2.7 Сроки фотопериодических подсветок
- •12.2.8 Другие агроприемы, используемые при управляемой технологии
- •12.2.9 Срез цветов
- •12.2.10 Защита растений гвоздики
- •12.2.10.1 Болезни гвоздики
- •12.2.10.2 Вредители гвоздики
- •12.3 Технология выращивания хризантем (метод управляемого цветения)
- •12.3.1 Факторы среды выращивания
- •12.3.3 Сорта хризантем
- •12.3.4 Выращивание посадочного материала
- •12.3.5 Выращивание хризантем
- •12.3.6 Защита хризантем от вредителей и болезней Вирусные болезни.
- •Бактериальные болезни.
- •Грибковые болезни.
- •13.1 Применение капельного полива с фертигацией
- •13.1.1 Почему необходима фертигация?
- •13.2 Современные системы подачи удобрений
- •13.3 Методы фертигации
- •13.4 Особенности удобрения
- •13.5 Доступность элементов питания в почве
- •13.7 Плодовые культуры
- •13.8 Виноград
- •13.9 Ягодные культуры
- •13.10 Распределение удобрений по периодам выращивания
- •13.10.1 Агрохимический анализ почвы
- •12.10.2 Программирование фертигации
- •13.10.3 Поливная норма
- •13.10.4 Определение наименьшей влагоемкости почвы
- •Методы определения поливной нормы
- •12.10.5 Расчет поливной нормы
- •13.12 Эксплуатация капельных оросительных систем
- •13.12.1 Показатель рН раствора удобрений
- •13.12.2 Особенности ирригации культур
- •13.13 Удобрения. Химические аспекты
- •13.14 Регулирование работы оборудования для фертигации
- •13.15 Примеры расчета фертигации
- •Учет факторов плодородия почвы на томате
- •Учет факторов плодородия на винограде
- •14.2 Сооо "крымтеплица"
- •Размещение субстрата
- •Посадка
- •Формирование дополнительного стебля
- •Период сентябрь-октябрь
- •Конец культурооборота
- •14.3 Открытое акционерное общество "комбинат "тепличный" броварского района киевской области
- •Высадка растений на постоянное место
- •Организация труда в теплице
- •Формировка растений
- •14.4 Гп нип агрокомбинат "пуща-водица"
- •14.4.1 Современное производство овощей в агрокомбинате
- •14.4.3 Технология выращивания шампиньона
- •15.1 Голландская фирма ats
- •15.2 A.I.K. Ltd - международные сельскохозяйственные проекты
- •Инженерный сектор
- •Агрономический сектор
- •15.3 Голландская фирма ревахо
- •Защищенный грунт
13.5 Доступность элементов питания в почве
Оптимизация минерального питания растений требует определения оптимальных доз удобрений под определенный урожай, создания оптимальных уровней и соотношения элементов питания в почве. Имея данные о содержании макро- и микроэлементов в почве, а также о составе почвы и ее агрохимических и физических свойствах, можно провести балансовый расчет. Исходя из потребностей выращиваемой культуры, с учетом планируемой урожайности, устанавливают оптимальные количества каждого из макро- и микроудобрений в почве. Важно учитывать, с какой скоростью растения могут поглотить эти элементы питания. От этого зависит система внесения удобрений. Следует подчеркнуть, что только фертигация совместное нормированное внесение в почву воды и удобрения — является технологической, организационной и экономической основой оптимизации получения высоких урожаев сельскохозяйственных культур с высоким качеством продукции. Способность растений расти с максимальной скоростью зависит от их биологических, химических и физических свойств, необходимых для того, чтобы корневая система полностью удовлетворяла потребность растений в питательных элементах и воде для протекания биохимических реакций в различных частях растений.
Скорость роста растений зависит от процессов, происходящих во всех частях растения. Продукты фотосинтеза образуются в листьях при воздействии солнечной энергии на углекислоту, поглощаемую из воздуха и воды, усваиваемую из почвы. Эти продукты, взаимодействуя с минеральными веществами, поступающими из почвы через корневую систему, а также при внекорневом внесении, то есть по листовому аппарату в виде опрыскивания, образуют соединения, необходимые для роста растений. Но величина урожая может быть ограничена недостаточной скоростью снабжения или поступления любого из элементов питания, что необходимо учитывать при организации системы внесения удобрений в почву. Доступность находящихся в почве элементов питания в своей основе определяется количеством и природой этих элементов в почвенном растворе и их взаимодействием, часто антагонизмом, при определенных соотношениях их в почвенном растворе, а также содержащимися в твердой фазе почвы. Поэтому внесение элементов питания в виде поливного раствора в определенной концентрации, не превышающей величину осмотического (всасывающего) давления корневой системы каждого вида растений, а также определенного соотношения и величины концентрации отдельных элементов питания, является основой оптимизации поступления элементов питания в растении и, следовательно, высокого урожая.
Так как корневая система регулирует снабжение надземных органов растения элементами питания в течение всего вегетационного периода, то следует учитывать скорость ее роста в зависимости от концентрации питательных элементов в почвенном растворе. Это объясняет большую эффективность фертигации при капельном орошении, когда в почву постоянно и небольшими дозами регулярно, 1—2 раза в неделю или чаще, вносят питатель-
ный сбалансированный раствор, доступный для корневой системы. При равномерном распределении питательных элементов в пахотном слое почвы превышение нормы уровня азота или фосфора (что имеет место при основном внесении удобрений в почву до посева или посадки рассады растений) приводит к увеличению отношения размера побег/корень за счет опережающего роста побегов или торможения роста корня. При несколько пониженных уровнях влажности почвы и элементов питания в начальный период роста степень развития корневой системы более высокая в сравнении с этими показателями при основном внесении удобрений в почву и высокой ее влажности. Поэтому фертигация в течение всего периода выращивания позволяет оптимизировать подачу удобрений и воды, пропорционально темпам роста растений. Обычно вегетационный период овощных культур подразделяют на три периода: 1) от посева, посадки до нарастания достаточной вегетативной массы; 2) от начала цветения до начала завязывания, а затем до начала налива плодов; 3) от начала созревания, а затем и в период всего плодоношения. Обычно во время второго и третьего периодов вегетации дают наибольшее количество удобрений из расчета кг/га/день и всего за эти периоды. Постоянно достаточно высокий уровень внесения фосфорных удобрений с поливом в первый и второй периоды выращивания способствует более сильному развитию корневой системы, что в дальнейшем положительно влияет на повышение урожайности.
Для увеличения объема корневой системы растений и активного поглощения питательных веществ необходима энергия, выделяемая при дыхании. Продукты фотосинтеза, образующиеся в надземных органах, необходимы для роста и дыхания корней. В процессе дыхания корни потребляют кислород и образуют СО2, в связи с чем необходим постоянный газообмен между воздухом в почвенных порах и атмосферой. Много кислорода поглощают и почвенные микроорганизмы, но в меньшем количестве, чем корневая система. При падении концентрации кислорода в почве ниже 10% объема пор рост корней замедляется. Только при капельном орошении, при поддержании в пахотном слое почвы влажности в пределах НВ 70% — НВ 90% обеспечиваются оптимальная влажность и воздухоемкость почвы, необходимый газообмен в почве. Поэтому нормированное капельное орошение — существенно важный фактор в достижении высокой урожайности и правильной эксплуатации поливных участков.
В практике выращивания очень важно знать, как правильно удобрять культуры в условиях капельного орошения и как ведут себя вносимые с фер-тигацией, и не только с ней, удобрения в почвенном растворе. Когда в почвенном растворе присутствуют различные элементы питания, скорость поглощения (усвоения) одного элемента может зависеть от поглощения другого в результате конкуренции за общие участки поглощения в корнях или в результате воздействия на иные процессы в растениях. Представленные в табл. 12.4 нормы удобрений по периодам выращивания (1—3) сбалансированы по их соотношению в подаваемом рабочем растворе и обеспечивают хорошую доступность их растениям, что является основой высокой урожайности.
Для получения высокого урожая в условиях оптимизации водного режима почвы (например капельного орошения) и оптимизации концентрации
элементов питания в почве (например за счет применения фертигации) необходимо вести в течение вегетации постоянный контроль за состоянием почвы: уровнем влажности в пахотном или корнеобитаемом слое почвы; концентрацией элементов питания в почве и почвенном растворе, рН почвенного раствора. Из изложенного ясно, что необходимо вносить удобрения и регулярно анализировать почву, а точнее, почвенный раствор, чтобы не допускать как недокорма, так и перекорма.
В современной технологии, обеспечивающей высокие урожаи и качество продукции, важность приобретает фактор оперативного агрохимического контроля. С этой целью следует в типичной части поля установить почвенный экстрактор, состоящий из пористого сосуда и трубки. В экстрактор поступает почвенный раствор, который можно с помощью шприца набирать для полного анализа рН, ЕС или для агрохимического анализа. Для этой цели можно использовать, например, выпускаемый московской фирмой "Ни-коаналит" портативный ионометрический комплект "Микон-2" на основе ионоселективных датчиков нитрата калия, азота, калия, кальция, хлора и других элементов или иные подобные приборы. Работа с прибором не требует специальной квалификации.
На основе оперативных данных содержания элементов питания в почвенном растворе и оптимального соотношения N, Р2О5, К2О и других элементов в подаваемых удобрениях можно регулировать количество вносимых NPK и др. на 1 га/день или в пересчете на 1 м2/день. Например, для культуры томата во второй период выращивания дневная норма составляет примерно 2,8—3,3 кг N/день, т.е. 280—330 мг/м N, 0,7—0,8 кг Р2О5/день, т. е. 70—80 мг/м2 в день Р2О5, 2,8—3,3 кг К^О/день, т. е. 280—330 мг/м2 в день К2О, а необходимое соотношение N : Р2О5, К^О = 1 : 0,246 : 1 в поливном растворе.
При рекомендуемом внесении и соответствующем соотношении NPK в почвенном растворе поступление элементов питания в растение проходит нормально. Если одни элементы накапливаются в почвенном растворе, а количество других снижается, может наступить дисбаланс. Так, по методике анализа почвы или почвенного раствора, как указывалось выше, при среднем уровне плодородия почвы показатели количества макроэлементов будут такими (определение по методике водной вытяжки): N = 60—90 мг/л, Р = 23-35 мг/л, К = 100-200 мг/л, Са = 70-100 мг/л, Mg = 30-50 мг/л, с учетом степени роста растения (1—3 периоды выращивания). Нормы питания растений, с учетом доступности элементов к усвоению из почвы, проверены специалистами в различных природно-климатических зонах Украины и России. Эта система выращивания -капельное орошение с фертигацией — по рекомендациям и нормам питания (см. табл. 12.8, 12.9), позволила в 2003— 2004 гг. получить следующие максимальные урожаи: лук репчатый = 120 т/га, капуста поздняя 120 т/га, томаты — 160 т/га, картофель — 60 т/га, огурец до 100 т/га на промышленных фермерских полях с оптимизированной системой выращивания. В практике мирового растениеводства применение капельного полива с фертигацией позволяет получать следующую урожайность в производственных условиях: томаты полевые — до 180 т/га, морковь — 100 т/га, арбузы — 115 т/га, клубника под пленкой — 48 т/га. Как видим, в перспективе еще большие горизонты повышения урожайности и экономической эффективности.
В условиях фертигации имеется возможность, не повышая концентрацию почвенного раствора, оптимизировать уровни обеспеченности растений элементами питания. С целью предотвращения нитратного загрязнения овощей используют повышенные дозы калия, в 1,3—2 раза превышающие количество азота в удобрении, что позволяет на фоне высоких доз азота получать высокие урожаи овощей с допустимыми уровнями нитратов в них. Это учитывают вышеприведенные рекомендации по удобрению овощных культур.
Остальное количество удобрений вносится в течении вегетационного периода. Наиболее прогрессивным способом летних подкормок является фер-тигация. Но в практике производства летние подкормки вносят и другими способами, например подкормкой в междурядья. В этом случае внесение удобрений проводят в определенные сроки и в определенном количестве (см. табл. 12.7).
Планируемая под определенную урожайность норма удобрения пересчиты-вается с помощью коэффициентов, учитывающих использование растениями удобрений, а также уровень плодородия почвы, согласно анализу. Ниже будут приведены примеры расчета нормы внесения удобрений с учетом анализа почвы по стандартным методикам (см. примеры расчета фертигации). Однако растениевод иногда не располагает возможностью своевременно получить анализ почвы с учетом плодородия. Поэтому можно привести примерные нормы внесения удобрений под овощные культуры в условиях интенсивной технологии с фертигацией на основе норм выноса NPK с урожаем. Нормы удобрений для фертигации (кг/га/день) разделяют на 3 периода выращивания овощных культур:
1 -й — от посадки до нарастания достаточной вегетативной массы;
2-й — от начала цветения до начала завязывания и затем до налива плодов;
3-й — от начала созревания и в период плодоношения, вплоть до завершения уборки (см. табл. 12.8 и 12.9).
