Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
konspekt_dn.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
1.46 Mб
Скачать

Метод циклического покоординатного спуска.

В этом методе в качестве направлений поиска используются координатные векторы. Метод циклического покоординатного спуска осуществляет поиск вдоль направлений d1, ..., dn, где dj - вектор, все компоненты которого, за исключением j-ого, равны нулю. Таким образом, при поиске по направлению dj меняется только переменная xj, в то время как все остальные переменные остаются зафиксированными.

Алгоритм циклического покоординатного спуска

Начальный этап. Выбрать eps >0, которое будет использоваться для остановки алгоритма, и взять в качестве d1, ..., dn координатные направления. Выбрать начальную точку x1, положить y1 = x1, k=j=1 и перейти к основному этапу.

Основной этап.

Шаг 1. Положить lymj равным оптимальному решению задачи минимизации f(yj+lym*dj) при условии, что lym принадлежит E1. Положить y[j+1]= yj+lymj*dj. Если j < n, то заменить j на j+1 и вернуться к шагу 1. Если j=n, то перейти к шагу 2.

Шаг 2. Положить x[k+1] = y[n+1]. Если || x[k+1] - xk || < eps, то остановиться. В противном случае положить y1= x[k+1], j=1, заменить k на k+1 и перейти к шагу 1.

Метод Хука и Дживса.

Метод Хука и Дживса осуществляет два типа поиска - исследующий поиск и поиск по образцу. Первые две итерации процедуры показаны на рисунке.

При заданном начальном векторе x1 исследующий поиск по координатным направлениям приводит в точку x2 . Последующий поиск по образцу в направлении x1- x2 приводит в точку y. Затем исследующий поиск, начинающийся из точки y, дает точку x3. Следующий этап поиска по образцу вдоль направления x3- x2 дает y*. Затем процесс повторяется.

Алгоритм Хука и Дживса с использованием одномерной минимизации.

Рассмотрим вариант метода, использующий одномерную минимизацию вдоль координатных направлений d1,..., dn и направлений поиска по образцу.

Начальный этап. Выбрать число eps > 0 для остановки алгоритма. Выбрать начальную точку x1, положить y1= x1, k=j=1 и перейти к основному этапу.

Основной этап.

Шаг 1. Вычилить lymj - оптимальное решение задачи минимизации f(yj+lym * dj) при условии lym принадлежит E1. Положить y[j+1]= yj+lymj*dj. Если j < n, то заменить j на j+1 и вернуться к шагу 1. Если j=n, то положить x[k+1] = y[n+1]. Если ||x[k+1] - xk|| < eps , то остановиться; в противном случае перейти к шагу 2.

Шаг 2. Положить d = x[k+1] - xk и найти lym - оптимальное решение задачи минимизации f(x[k+1]+lym*d) при условии lym принадлежит E1. Положить y1= x[k+1]+lym*d, j=1, заменить k на k+1 и перейти к шагу 1.

1-поиск по образцу; 2- исследующий поиск вдоль координатных осей.

4. Многомерный поиск, использующий производные.

Пусть функция f(x) деференцируема в Еn . В этом разделе рассматривается итерационная процедура минимизации вида:

xk = x[k-1] + lym[k]*dk, k=1,... ,

где направление убывания dk определяется тем или иным способом с учетом информации о частных производных функции f(x), а величина шага lym[k] >0 такова, что

f(xk) < f(xk-1), k=1,2,....

Так как функция предполагается дифференцируемой, то в качестве критерия останова в случае бесконечной итерационной последовательности { xk }, как правило, выбирают условие ||grad(f(xk))||<eps, хотя, разумеется, могут быть использованы и другие критерии.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]