- •1.Классификация информационных систем.
- •1. Понятие информационных систем.
- •2. Структура информационных систем.
- •3*. Классификация информационных систем по уровням управления
- •3. Свойства информационных систем.
- •4. Показатели эффективности работы информационных систем.
- •5. Системы хранения и манипулирования данными.
- •6. Модели данных и их отличительные особенности.
- •7. Этапы проектирования информационных систем.
- •8.Трехуровневая архитектура субд
- •9. Реляционная модель базы данных.
- •1.2 Домены
- •1.3 Отношения, атрибуты, кортежи отношения
- •10.Принципы инфологического проектирования.
- •12.Порядок выполнения операторов sql
- •Применение агрегатных функций и вложенных запросов в операторе выбора
- •13.Основные показатели качества информационной сети
- •14.Физическая и логическая структуризация сети. Физическая структуризация сети
- •Логическая структуризация сети
- •15. Алгоритмы и протоколы маршрутизации
- •16.Техническое обеспечение информационных сетей
- •17. Программное обеспечение информационных сетей.
- •18. Трансляция сетевых адресов.
- •19.Основные понятия теории систем (система, элемент, структура,
- •20. Понятие и свойства сложной системы.
- •21.Математическое описание системы.
- •22.Сущность задач анализа и синтеза систем.
- •23.Количественные и качественные методы системного анализа.
- •Количественные методы системного анализа
- •25.Генетические алгоритмы.
- •24.Классификация интеллектуальных информационных систем
- •26. Нечеткие подмножества, функции принадлежности и операции над
- •27. Нечеткая переменная. Лингвистическая переменная. Правила для
- •28. Параметрическое нечеткое множество. Сравнение нечетких множеств.
- •29. Нечеткие системы управления.
- •30. Искусственные нейронные сети: структура и обучение.
- •31. Стратегии проектирования информационных систем. Макетирование
- •32. Моделирование потоков данных (dfd).
- •33. Описания бизнес- процессов (idef3).
- •34. Диаграммы вариантов использования согласно стандарту языка uml.
- •35. Диаграммы классов языка uml.
- •36. Диаграммы взаимодействия языка uml.
- •37. Диаграммы состояний и деятельности языка uml.
- •38. Методология функционального моделирования (idef0).
- •1. Процесс создания idefo-модели
- •2. Построение idef0-модели
- •3. Принципы моделирования в idef0
- •39. Задачи проектирования информационной системы.
- •40. Модели жизненного цикла информационной системы.
- •41. Классификация видов моделирования систем.
- •42. Математические схемы моделирования (назначение, характеристика).
- •43. Моделирование дискретно-детерминированных систем (f-схемы).
- •44. Моделирование дискретно-стохастических систем (р-схемы).
- •45. Моделирования непрерывно-стохастических систем (q-схемы).
- •46. Базовая последовательность случайных чисел (назначение, способы
- •47. Моделирование случайных событий.
- •48. Формирование потоков событий с заданными законами
- •49. Классификация моделей систем массового обслуживания.
- •50. Моделирование одноканальных смо.
7. Этапы проектирования информационных систем.
8.Трехуровневая архитектура субд
В
процессе научных исследований, посвященных
тому, как именно должна быть устроена
СУБД, предлагались различные способы
реализации. Самым жизнеспособным из
них оказалась предложенная американским
комитетом по стандартизации ANSI
(AmericanNationalStandardsInstitute) трехуровневая
система организации БД, изображенная
на рис. 1:
Рис. 1. Трехуровневая модель системы управления базой данных, предложенная ANSI
Архитектура включает три уровня: внутренний, концептуальный и внешний. В общих чертах они представляют собой следующее:
Внутренний - это уровень, наиболее близкий к физическому хранению, т.е. связанный со способами сохранения информации на физических устройствах хранения.
Внешний - наиболее близок к пользователям, т.е. он связан со способами представления данных для отдельных пользователей.
Концептуальный уровень - это промежуточный уровень между двумя первыми; другими словами, это центральное управляющее звено, где БД представлена в наиболее общем виде, который объединяет данные, используемые всеми приложениями, работающими с данной БД.
Уровень внешних моделей — самый верхний уровень, где каждая модель имеет свое "видение" данных. Этот уровень определяет точку зрения на БД отдельных пользователей (приложений). Каждое приложение видит и обрабатывает только те данные, которые необходимы именно этому приложению. Например, система распределения работ использует сведения о квалификации сотрудника, но ее не интересуют сведения об окладе, домашнем адресе и телефоне сотрудника, и наоборот, именно эти сведения используются в подсистеме отдела кадров.
Концептуальный уровень — центральное управляющее звено, здесь база данных представлена в наиболее общем виде, который объединяет данные, используемые всеми приложениями, работающими с данной базой данных. Фактически концептуальный уровень отражает обобщенную модель предметной области (объектов реального мира), для которой создавалась база данных. Как любая модель, концептуальная модель отражает только существенные, с точки зрения обработки, особенности объектов реального мира. Концептуальная схема - это определение концептуального представления. В большинстве существующих систем концептуальная схема в действительности представляет собой немного больше, чем простое объединение всех отдельных внешних схем с дополнительными средствами безопасности и правилами обеспечения целостности.
Внутреннее представление - это представление нижнего уровня всей БД. Внутреннее представление так же, как внешнее и концептуальное, не связанно с физическим уровнем. Это представление предполагает бесконечное линейное адресное пространство. Внутреннее представление описывается с помощью внутренней схемы, которая определяет не только различные типы хранимых записей, но также существующие индексы, способы представления хранимых полей, физическую последовательность хранимых записей и т.д.
Эта архитектура позволяет обеспечить логическую (между уровнями 1 и 2) и физическую (между уровнями 2 и 3) независимость при работе с данными. Логическая независимость предполагает возможность изменения одного приложения без корректировки других приложений, работающих с этой же базой данных. Физическая независимость предполагает возможность переноса хранимой информации с одних носителей на другие при сохранении работоспособности всех приложений, работающих с данной базой данных. Это именно то, чего не хватало при использовании файловых систем.
