- •1 Указания по выполнению курсового проекта
- •1.1 Состав пояснительной записки
- •2 Проектирование конструкции скважины и расчет обсадных колонн на прочность
- •2.1 Обоснование и проектирование конструкции скважины
- •Т аблица 2 – Коэффициент резерва
- •2.2 Обоснование оборудования устья скважины
- •2.3 Расчет обсадных колонн на прочность
- •2.3.1 Выбор равнопрочной конструкции обсадной колонны
- •Окончание таблицы 8
- •2.3.2 Особенности расчета обсадных колонн для наклонно направленных скважин
- •2.3.3 Особенности расчета обсадных колонн для горизонтальных скважин
- •2.4 Расчет усилия натяжения обсадных колонн
- •2.5 Обоснование состава технологической оснастки и размещение ее элементов на обсадной колонне
- •Комплекс технических средств для спуска, подвески и герметизации хвостовиков 114 мм без их цементирования пхн 114 / 168.
- •Комплекс технических средств для спуска, подвески и цементирования хвостовиков диаметром 114 мм пхц 114/168.
- •Устройства спуска, подвески и герметизации хвостовика типа успгх-114/168.
- •2.6 Спуск обсадных колонн
- •3 Цементирование скважин
- •3.1 Обоснование способа цементирования и расчета параметров процесса цементирования
- •3.2 Выбор материалов для цементирования скважин
- •3.2.1 Классификация тампонажных материалов по гост 1581-96
- •3.2.2 Тампонажные материалы и химреагенты согласно классифи ции арi
- •3.2.3 Стандарты для тампонажных цементов
- •3.2.4 Тампонажные материалы и добавки для цементирования скважин
- •Окончание таблицы 32
- •3.2.5 Выбор жидкости затворения
- •3.2.6 Выбор буферной жидкости
- •3.2.7 Обоснование необходимой плотности тампонажного раствора
- •3.3 Расчет технико-технологических параметров процесса цементирования
- •3.3.1 Определение потребного объема материалов для приготовления тампонажного раствора
- •3.3.2 Определение необходимого объема продавочной жидкости
- •3.3.3 Выбор оборудования для цементирования скважин
- •3.3.4 Обоснование режимно-технологических параметров процесса цементирования
- •3.4 Обоснование способа контроля качества цементирования
- •3.5 Выбор способа освоения скважины, организация процесса освоения
- •3.6 Вопросы охраны труда, окружающей среды и техники безопасности
- •4 Программа расчета технико-технологических параметров процесса цементирования на пэвм
- •4.1 Алгоритм программы расчета технико-технологических параметров процесса цементирования на пэвм
- •4.2 Задание разреза и параметров скважины
- •4.3 Задание жидкостей используемых при цементировании
- •4.4 Гидравлический расчет
- •4.6 Отчет по результатам цементирования
- •5 Требования к оформлению курсового проекта
- •Приложения Приложение 1 о бразцы оформления работы
- •1.1 Оформление титульного листа
- •Состав пояснительной записки:
- •Н. Контр. Ф.И.О.
- •1.4 Рамка для последующих страниц
- •Прочностные и весовые характеристики труб отечественного производства
- •Прочностные характеристики импортных обсадных труб (по стандартам ани)
- •3.9 Коэффициент снижения прочности гладкого тела трубы
- •Перевод единиц системы си в единицы мкгсс
3.2.2 Тампонажные материалы и химреагенты согласно классифи ции арi
Для цементирования нефтяных и газовых скважин в США в качестве базового цемента используется портландцемент - чистый или с примесями [18].
Такие тампонажные материалы подразделяются на девять основных классов (А, В, С, D, Е, F, G, Н, I) по следующим признакам: приблизительный интервал глубин и оптимальные температуры использования, сульфатостойкость соответствующего класса.
Дополнительные требования в тампонажным раствора таковы:
- максимальная седиментация для цементов классов G и Н не должна превышать 1,4 %;
- прочность на сжатие камня из цемента класса I через 7 сут не должна быть ниже, чем через 1 сут твердения.
Время твердения растворов обусловлено продолжительностью процесса цементирования с запасом 25 %. Для цементов классов G и Н задается минимальное время затвердения, которое составляет 2 ч.
Давление при проведении измерений времени затвердения должно соответствовать гидростатическому давлению, которое создается цементным раствором с определенной плотностью.
Для цементирования скважин со сложными геолого-техническими условиями, которым не соответствуют портландцемент по классификации АРI, используются специальные цементы.
К специальным цементам относятся следующие:
1 Облегченные тампонажные материалы, в частности, пуцолановый цемент (изготавливается путем совместного помола портландцементного клинкера и пуццолана), цементно-зольные смеси, пуцоланово-известковый и зольно-известковый цементы.
Существуют также методы образования сверхлегких тампонажных растворов (р < 1250 кг/м3). Такая низкая плотность тампонажного раствора достигается путем насыщения его пустотными микросферами или сжатым азотом при предварительной его обработке ПАВ, стабилизирующим пену.
2 Утяжеленные тампонажные материалы, которые образуются двумя способами:
- введением примеси утяжелителя, в частности, песка, барита, ильменита, гематитовой руды;
- снижением водоцементного отношения с сохранением подвижности тампонажного раствора за счет введения в него пластификаторов.
3. Расширяющиеся цементы.
Расширение в специальных цементах, которые изготавливаются в США, обусловлено образованием в процессе гидратации гидросульфоаминатов типа эттрингита. Абсолютная величина расширения не должна превышать 0,5 %.
Существует три основных типа расширяющихся цементов:
1) тип К - смесь портландцемента с сульфоаминатом кальция;
2) тип S - портландцемент (класс А) с повышенным содержанием С3А и примесью СаSO4 1/2Н2О;
3) тип М - портландцемент (класс А) с незначительной примесью кислотостойкого цемента.
К специальным цементам также относят:
- цементы с примесью латекса (латекс-цементы); они отличаются низкой водоотдачей, улучшенными реологическими параметрами, а цементный камень приобретает высокую упругость;
- портландцемента с примесью бентонита (8-25 %) и пластификаторов (лигносульфоната); такие составы имеют низкую водоотдачу и относятся к облегченным цементам;
- солевые гельцементы, которые изготавливаются из портландцемента, бентонита (12-16 %), соли (например, NаС1), лигносульфоната кальция (0,1-1,5 %); они отличаются пониженной вязкостью и используются для цементирования солевых отложений.
Для регулирования свойств тампонажных растворов используются:
- ускорители твердения: хлористый кальций, хлористый натрий, кремнекислый натрий и другие неорганические ускорители;
- замедлители твердения для низких температур: MRL-1, (3), (L); НR-4, (7), (6L); D-13 (81); R-5; WR-1, (2), (L1). для высоких и сверхвысоких температур MHR-8, (9), (L); HR-12, (15), (13L); D-28, (29); R-11, (15L); M-6; WR-6, (7); такие замедлители относятся к лигносульфонатам, органическим кислотам, производным целлюлозы, боратам и др.;
- пластификаторы МСD-3, (4) (L); TF-3, (4), (5); D-30, (31), (45), (65), (80), (31L); CFR-1, (2) и др.; пластификаторы марки CFR одновременно являются замедлителями твердения; большинство пластификаторов представляют собой модифицированные лигносульфонаты и низкомолекулярные водорастворимые смолы;
- вещества понижающие водоотдачу: MFL-4, (5), (7); Халад 9, (14); D-19, (22), (59), (60); CF-1, (2), R-6 и др.. В основном это производные целлюлозы.
