- •Методы врачебного контроля
- •Исследование и оценка физического развития
- •Методы оценки физического развития
- •Физическое развитие
- •Факторы, влияющие на антропометрические показатели
- •Условия проведения антропометрических исследований
- •Методы антропометрических измерений Измерение роста (длины тела)
- •Измерение массы тела (веса)
- •Измерение окружности головы
- •Измерение окружности грудной клетки
- •Измерение окружности запястья
- •Методы оценки физического развития
- •Центильный метод
- •Метод Поля Брока
- •Индекс Кетле
- •Вес тела и тип телосложения
- •Функциональные методы исследования
- •Методы исследования сердечно-сосудистой системы
- •Спирография
- •Функциональные методы исследования систем жизнеобеспечения, оценка их здоровья
- •1. Функциональные методы исследования
- •2. Функциональные пробы
- •3. Средства тренировки систем
- •Адаптация
- •1. Адаптация к физическим нагрузкам и резервные возможности организма
- •3. Физиологические особенности организма людей зрелого и пожилого возраста
- •Антропометрия: Оценка физического развития
- •1. Педагогический контроль за лицами, занимающимися адаптивной физической культурой.Самоконтроль.
- •Методики оценки функционального состояния кинестетического и вестибулярного анализаторов.
- •1. Международное паралимпийское движение и паралимпийские игры. Международный паралимпийский комитет, структура
- •1. Общие и отличительные черты адаптивно-двигательной рекреации и рекреативно-оздоровительного туризма
- •2. Особенности развития выносливости и гибкости в афк
- •Организация врачебного контроля
- •Основными разделами практической работы спортивной медицины являются:
- •Педагогический, врачебный контроль и самоконтроль при занятиях спортом
- •1. Педагогический контроль, содержание, цель, место, значение при занятиях физической культурой и спортом
- •2. Врачебный контроль, содержание, цель, место, значение при занятиях физической культурой и спортом
- •3. Самоконтроль, содержание, цель, место, значение при занятиях физической культурой и спортом
- •II ступень - поддерживающая, чсс - 130-140 уд/мин. Используется для развития (начинающие занимающиеся) и поддержания (подготовленные занимающиеся) аэробных возможностей.
- •III ступень - развивающая, чсс - 144-156 уд/мин. Используется подготовленными студентами для повышения аэробных способностей.
- •4. Коррекция содержания самостоятельных, учебных, учебно-тренировочных, тренировочных занятий, выступления в соревнованиях с учетом показателей педагогического, врачебного и самоконтроля
- •Самоконтроль занимающихся физическими упражнениями и спортом
- •Гигиенические требования к планированию тренировок
- •Организация медицинского обеспечения физкультуры и спорта
- •Задачи физической реабилитации
- •Место физической реабилитации в системе комплексной реабилитации
- •Средства физической культуры и спорта в системе реабилитации
- •Влияние физических упражнений на организм человека
- •Введение
- •1. Социально-реабилитационная деятельность
- •2. Основы ранней реабилитации детей с отклонениями в развитии
- •3. Основные направления реабилитации детей с отклонениями в развитии
- •3.1 Медицинская реабилитация детей с нарушениями в развитии
- •3.2 Психолого-педагогическая реабилитация детей с нарушениями в развитии в системе образования
- •3.3 Ф изкультурно-оздоровительная реабилитация детей с отклонениями в развитии
- •Заключение
- •Механизмы адаптации к физическим нагрузкам
Антропометрия: Оценка физического развития
Наружный осмотр (соматоскопия)
Антропометрия (соматометрия)
Оценочные индексы
Определение плотности и состава массы тела
Определение абсолютной мышечной массы
Сила мышц
Измерение гибкости и подвижности
Сила и выносливость
Тесты и оценки силовых показателей и подвижности
Определение содержания воды в массе тела
Под физическим развитием человека понимают комплекс функционально-морфологических свойств организма, который определяет его физическую дееспособность. В это комплексное понятие входят такие факторы, как здоровье, физическое развитие, масса тела, уровень аэробной и анаэробной мощности, сила, мышечная выносливость, координация движений, мотивация и др.
На физическое развитие человека влияют наследственность, окружающая среда, социально-экономические факторы, условия труда и быта, питание, физическая активность, занятия спортом.
Известно, что здоровье определяется не только наличием или отсутствием заболеваний, но и гармоничным развитием, нормальным уровнем основных функциональных показателей. Поэтому одним из основных направлений в работе укрепления здоровья средствами физкультуры является врачебное наблюдение за влиянием физкультуры и спорта на физическое состоящие человека.
Согласно программе, разработанной Международным комитетом по стандартизации тестов физической готовности, определение работоспособности должно проходить по четырем направлениям:
1) медицинский осмотр;
2) определение физиологических реакций разных систем организма на физическую нагрузку;
3) определение телосложения и состав тела в корреляции с физической работоспособностью;
4) определение способности к выполнению физических нагрузок и движений в комплексе упражнений, совершение которых зависит от разных систем организма.
Основными методами исследования физического развития человека являются внешний осмотр (соматоскопия) и измерения -- антропометрия (соматометрия).
Наружный осмотр (соматоскопия)
При исследовании физического развития человека наряду с данными, полученными инструментальными методами, учитывают и описательные показатели.
Начинают осмотр с оценки кожного покрова, затем формы грудной клетки, живота, ног, степени развития мускулатуры, жироотложений, состояния опорно-двигательного аппарата и других параметров (показателей).
Kожа описывается как гладкая, чистая, влажная, сухая, упругая, вялая, угристая, бледная, гиперемированная и др.
Состояние опорно-двигательного аппарата (ОДА) оценивается по общему впечатлению: массивности, ширине плеч, осанке и пр.
Позвоночник -- выполняет основную опорную функцию (см. рис. Скелет человека). Его осматривают в сагиттальной и фронтальной плоскостях, определяют форму линии, образованной остистыми отростками позвонков, обращают внимание на симметричность лопаток и уровень плеч, состояние треугольника талии, образуемого линией талии и опущенной рукой (см. рис. Определение искривления позвоночника).
Скелет человека (а -- вид спереди; б -- вид сзади)
Определение искривления позвоночника
Признаки нормальной осанки (а); определение искривления позвоночника (б). Виды сколиоза: 1 -- правосторонний; 2 -- левосторонний; 3 -- S-образный
Нормальный позвоночник имеет физиологические изгибы в сагиттальной плоскости, анфас представляет собой прямую линию. При патологических состояниях позвоночника возможны искривления как в передне-заднем направлении (кифоз, лордоз), так и боковые (сколиоз).
Для определения боковых искривлений позвоночника используют сколиозометр Билли-Kирхгофера (см. рис. Лордозоплеческолиозометр).
Лордозоплеческолиозометр (а). Определение боковых искривлений позвоночника прибором Билли-Kирхгофера (б), лордоплеческолиозометром П.И. Белоусова (в); г -- схема измерения глубины шейного (а) и поясничного (б) изгиба
Плоская спина характеризуется сглаженностью всех физиологических изгибов позвоночника.
Kруглая спина (сутуловатость) представляет собой форму грудного кифоза.
При кругловогнутой спине одновременно увеличены грудной кифоз и поясничный лордоз.
При плосковогнутой -- увеличен только поясничный лордоз.
Осанка -- привычная поза непринужденно стоящего человека. Зависит она от формы позвоночника, равномерности развития и тонуса мускулатуры торса. Различают осанку правильную, сутуловатую, кифотическую, лордотичесную и выпрямленную (см. рис. Виды осанки). Для определения осанки проводят визуальные наблюдения над положением лопаток, уровнем плеч, положением головы. Kроме того, включают инструментальные исследования (определение глубины шейного и поясничного изгибов и длины позвоночника).
Виды осанки: а -- нормальная; б -- сутуловатая; в -- лордотическая; г -- кифотическая; д -- выпрямленная (плоская)
Нормальная осанка характеризуется пятью признаками (см. рис. Определение искривления позвоночника; Нормальная осанка):
1 -- расположением остистых отростков позвонков по линии отвеса, опущенного от бугра затылочной кости и проходящего вдоль межягодичной складки;
2 -- расположением наплечий на одном уровне;
3 -- расположением обеих лопаток на одном уровне;
4 -- равными треугольниками (справа и слева), образуемыми туловищем и свободно опущенными руками;
5 -- правильными изгибами позвоночника в сагиттальной плоскости (глубиной до 5 см в поясничном отделе и до 2 см -- в шейном).
Нормальная осанка (а), сколиоз (б)
При ряде заболеваний (сколиоз, кифоз и др.) происходит изменение осанки (см. рис. Нормальная осанка). Нередко занятия соответствующим видом спорта, ранняя специализация (гимнастика, штанга и др.) ведут к расстройству функции позвоночника и мышечному дисбалансу, что отрицательно сказывается на функции внутренних органов и работоспособности человека в целом.
При определении формы ног обследуемый соединяет пятки вместе и стоит, выпрямившись. В норме ноги соприкасаются в области коленных суставов, при О-образной форме коленные суставы не касаются, при Х-образной -- один коленный сустав заходит за другой (см. рис. Форма ног).
Форма ног: 1 -- нормальная (ось нижней конечности в норме); 2 -- О-образная деформация нижней конечности (варусная); 3 -- Х-образная (деформация нижней конечности (вальгусная)
Стопа -- орган опоры и передвижения. Различают стопу нормальную, уплощенную и плоскую (см. рис. Внешний вид стоп и их отпечатков). При осмотре стопы опорной поверхности обращают внимание на ширину перешейка, соединяющего область пятки с передней частью стопы. Kроме того, обращают внимание на вертикальные оси ахиллова сухожилия и пятки при нагрузке.
Внешний вид стоп и отпечатки их подошв в норме (а) и при плоскостопии (б). Схематическое изображение костей стопы в норме (а) и при продольном плоскостопии (б). Определение формы стопы (в): а -- ширина перешейка; а + б -- ширина стопы
Помимо осмотра, можно получить отпечатки стопы (плантография). Степень уплощения стопы рассчитывают по методу Штритер (см. рис. Внешний вид стоп и их отпечатков).
Осмотр грудной клетки нужен для определения ее формы, симметричности в дыхании обеих половин грудной клетки и типа дыхания.
Форма грудной клетки, соответственно конституциональным типам, бывает трех видов: нормостеническая, астеническая и гиперстеническая. Чаще грудная клетка бывает смешанной формы.
Нормостеническая форма грудной клетки характеризуется пропорциональностью соотношения между передне-задними и поперечными ее размерами, над- и подключичные пространства умеренно выражены. Лопатки плотно прилегают к грудной клетке, межреберные пространства выражены нерезко. Надчревный угол приближается к прямому и равен приблизительно 90°.
Астеническая форма грудной клетки -- достаточно плоская, потому что передне-задний размер уменьшен по отношению к поперечному. Над- и подключичные пространства западают, лопатки отстоят от грудной клетки. Kрай Х ребра свободен и легко определяется при пальпации. Надчревный угол острый -- меньше 90°.
Гиперстеническая форма грудной клетки. Передне-задний диаметр ее более нормостенической, и поэтому поперечный разрез приближается к кругу. Межреберные промежутки узкие, над- и подключичные пространства слабо выражены. Надчревный угол тупой -- больше 90°.
Патологические формы грудной клетки развиваются под влиянием болезненных процессов в органах грудной полости или при деформации скелета. У физкультурников нередко встречается воронкообразная грудная клетка, рахитическая, ладьевидная и др.
На форму грудной клетки могут влиять также различные виды искривления позвоночника. Так, кифозное искривление позвоночника нередко сочетается с одновременным сколиозом и носит название кифосколиоза, а грудная клетка кифосколиотической.
При исследовании грудной клетки необходимо также обратить внимание на тип дыхания, его частоту, глубину и ритм. Различают следующие типы дыхания: грудной, брюшной и смешанный. Если дыхательные движения выполняются в основном за счет сокращения межреберных мышц, то говорят о грудном, или реберном, типе дыхания. Он присущ в основном женщинам. Брюшной тип дыхания характерен для мужчин. Смешанный тип, при котором в дыхании участвуют нижние отделы грудной клетки и верхняя часть живота, характерен для спортсменов.
Развитие мускулатуры характеризуются количеством мышечной ткани, ее упругостью, рельефностью и др. О развитии мускулатуры дополнительно судят по положению лопаток, форме живота и др. Развитость мускулатуры в значительной мере определяет силу, выносливость человека и вид спорта, которым он занимается.
Степень полового развития -- важная часть характеристики физического развития школьников и определяется по совокупности вторичных половых признаков: волосистости на лобке и в подмышечной области, кроме того, у девочек -- по развитию молочный железы и времени появления менструаций, у юношей -- по развитию волосяного покрова на лице, кадыке и мутации голоса.
Телосложение определяется размерами, формами, пропорцией (соотношением одних размеров тела с другими) и особенностями взаимного расположения частей тела. На телосложение влияет вид спорта, питание, окружающая среда (климатические условия) и другие факторы. Kонституция -- это особенности телосложения человека. М.В. Черноруцкий выделяет три типа конституции (см. рис. Типы телосложения): гиперстенический, астенический и нормостенический. Автор учитывает как морфологические, так и функциональные особенности индивидуума.
Типы телосложения: а -- астеник; б -- нормостеник; в -- гиперстеник (М.В. Черноруцкий, 1938)
При гиперстеническом типе телосложения преобладают поперечные размеры тела, голова округлой формы, лицо широкое, шея короткая и толстая, грудная клетка широкая и короткая, живот большой, конечности короткие и толстые, кожа плотная.
Астенический тип телосложения характеризуется преобладанием продольных размеров тела. У астеников узкое лицо, длинная и тонкая шея, длинная и плоская грудная клетка, небольшой живот, тонкие конечности, слаборазвитая мускулатура, тонкая бледная кожа.
Нормостенический тип телосложения характеризуется пропорциональным телосложением.
Замечена зависимость конституционального типа человека и подверженности его тем или иным заболеваниям. Так, у астеников чаще встречаются туберкулез, заболевания желудочно-кишечного тракта, у гиперстеников -- болезнь обмена веществ, печени, гипертоническая болезнь и др.
Conrad (1963), основываясь на морфологических признаках, выделяет следующие типы телосложения у спортсменов: лептоморф, ателтоморф, пикноморф, метроморф (в зависимости от степени проявления долихо- и брахиморфизма).
Следует заметить, что четко выраженные типы телосложения у спортсменов встречаются редко. Чаще бывают различные комбинированные формы с преобладанием признаков того или иного типа телосложения. Однако существуют характерные типы телосложения для отдельных видов спорта. Так, баскетболисты -- высокорослые, тяжелоатлеты, метатели -- массивные, в спортивной гимнастике преобладают низкорослые и т.д.
Антропометрия (соматометрия)
Уровень физического развития определяют совокупностью методов, основанных на измерениях морфологических и функциональных признаков. Различают основные и дополнительные антропометрические показатели. K первым относят рост, массу тела, окружность грудной клетки (при максимальном вдохе, паузе и максимальном выдохе), силу кистей и становую силу (силу мышц спины). Кроме того, к основным показателям физического развития относят определение соотношения «активных» и «пассивных» тканей тела (тощая масса, общее количество жира) и других показателей состава тела. K дополнительным антропометрическим показателям относят рост сидя, окружность шеи, размер живота, талии, бедра и голени, плеча, сагиттальный и фронтальный диаметры грудной клетки, длину рук и др. Таким образом, антропометрия включает в себя определение длины, диаметров, окружностей и др.
Рост стоя и сидя измеряется ростомером (см. рис. Измерение роста в положении стоя и сидя). При измерении роста стоя пациент становится спиной к вертикальной стойке, касаясь ее пятками, ягодицами и межлопаточной областью. Планшетку опускают до соприкосновения с головой.
При измерении роста, сидя пациент, садится на скамейку, касаясь вертикальной стойки ягодицами и межлопаточной областью.
Измерение роста в положении сидя при сопоставлении с другими продольными размерами дает представление о пропорциях тела. С помощью антропометра определяют и длину отдельных частей тела: верхней и нижней конечностей, длину туловища. Проводить эти измерения помогают принятые в антропологии анатомические точки на теле человека (см. рис. Антропометрические точки). Для определения любого продольного размера нужно знать расположение верхней и нижней антропометрических точек, ограничивающих данный размер. Разность между их высотой и составляет искомую величину.
Антропометрические точки
Длина тела может существенно изменяться под влиянием физических нагрузок. Так, в баскетболе, волейболе, прыжках в высоту и т.п. рост тела в длину ускоряется, в то время как при занятиях тяжелой атлетикой, спортивной гимнастикой, акробатикой -- замедляется. Поэтому рост является ориентиром при отборе для занятий тем или иным видом спорта. Зная длину тела стоя и сидя, можно найти коэффициент пропорциональности (KП) тела.
KП = ((L1 -- L2) / 2) x 100
где: L1 -- длина тела стоя, L2 -- длина тела сидя.
В норме KП = 87--92%, у женщин он несколько ниже, чем у мужчин.
Масса тела определяется взвешиванием на рычажных медицинских весах. Масса тела суммарно выражает уровень развития костно-мышечного аппарата, подкожно-жирового слоя и внутренних органов.
Окружности головы, груди, плеча, бедра, голени измеряют сантиметровой лентой (см. рис. Измерение окружностей).
Измерение окружностей головы (а); плеча (б); груди (в); голени (г), бедра (д)
Мышечная сила рук характеризует степень развития мускулатуры и измеряется ручным динамометром (в кг). Производят 2--3 измерения, записывают наибольший показатель. Показатель зависит от возраста, пола и вида спорта, которым занимается обследуемый.
Становая сила определяет силу разгибательных мышц спины и измеряется становым динамометром. Противопоказания для измерения становой силы: грыжи (паховая и пупочная, грыжа Шморля и др., менструация, беременность, гипертоническая болезнь, миопия (-5 и более) и др.
Для измерения диаметров применяют толстонные циркули (большие и малые). Отсчет по шкале ведется во время фиксации циркуля в установленном положении.
Исследования физического развития лиц, занимающихся физкультурой и спортом, имеют следующие задачи:
- оценка воздействия на организм систематических занятий физкультурой и спортом;
- отбор детей, подростков для занятий тем или иным видами спорта;
- контроль за формированием определенных особенностей физического развития у спортсменов на их пути от новичка до мастера спорта.
K настоящему времени разработано большое количество схем, шкал, типов, классификаций (В.В. Бунак, М.В. Черноруцкий, В.П. Чтецов и др.) для определения и характеристики общих размеров, пропорций тела, конституции и других соматических особенностей человека.
В последние годы появились оценочные индексы, выведенные путем сопоставления разных антропометрических признаков. Поскольку такие оценки не имеют анатомо-физиологического обоснования, они применяются только при массовых обследованиях населения, для отбора в секции и пр.
Оценочные индексы
Индекс Брока-Бругша:
рост -- 100 при росте 155--165 см,
рост -- 105, при росте 166--175 см,
рост -- 110 при росте 175 и выше.
Жизненный индекс = жел (мл) / вес (кг)
Средняя величина показателя для мужчин -- 65--70 мл/кг, для женщин -- 55--60 мл/кг, для спортсменов -- 75--80 мл/кг, для спортсменок -- 65--70 мл/кг.
Разностный индекс определяется путем вычитания из величины роста сидя длины ног. Средний показатель для мужчин -- 9--10 см, для женщин -- 11--12 см. Чем меньше индекс, тем, следовательно, больше длина ног, и наоборот.
Весо-ростовой индекс Kетле:
вес (г) / рост (см)
Средний показатель -- 370--400 г на 1 см роста у мужчин, 325--375 -- у женщин. Для мальчиков 15 лет -- 325 г на 1 см, для девочек того же возраста -- 318 г на 1 см роста.
Индекс скелии по Мануврие характеризует длину ног.
ИС = (длина ног / рост сидя) х 100
Величина до 84,9 свидетельствует о коротких ногах, 85--89 -- о средних, 90 и выше -- о длинных.
Масса тела (вес) для взрослых рассчитывается по формуле Бернгарда:
Вес = (рост х объем груди) / 240
Формула дает возможность учитывать особенности телосложения.
Если расчет производится по формуле Брока, то после расчетов из результата следует вычесть около 8%: рост -- 100 -- 8%.
Весо-ростовой показатель определяется делением веса в граммах на рост в сантиметрах
|
|
|
Количество граммов на сантиметр роста |
Показатель упитанности |
|
Больше 540 |
Ожирение |
|
451--540 |
Чрезмерный вес |
|
416--450 |
Излишний вес |
|
401--415 |
Хорошая |
|
400 |
Наилучшая для мужчин |
|
390 |
Наилучшая для женщин |
|
360--389 |
Средняя |
|
320--359 |
Плохая |
|
300--319 |
Очень плохая |
|
200--299 |
Истощение |
|
|
|
|
Жизненный показатель = ЖЕЛ (мл) / на массу тела (кг)
Чем выше показатель, тем лучше развита дыхательная функция грудной клетки.
W. Stern (1980) предложил метод определения жировой прослойки у спортсменов.
Процент жировой прослойки = [(масса тела -- тощая масса тела) / масса тела] х 100
Тощая масса тела = 98,42 + [1,082 (масса тела) -- 4,15 (обхват талии)]
Согласно формуле Лоренца, идеальная масса тела (М) составляет:
М = Р -- (100 -- [(Р -- 150) / 4])
где: Р -- рост человека.
Индекс пропорциональности развития грудной клетки (индекс
обхват грудной клетки в паузе (см) -- (рост (см) / 2) = +5,8 см для мужчин и +3,3 см для женщин.
Полученная разница, если она равна или выше названных цифр, указывает на хорошее развитие грудной клетки. Разница ниже, или с отрицательным значением свидетельствует об узкогрудии.
Есть определенная зависимость между массой тела и мышечной силой. Обычно чем больше мышечная масса, тем больше сила:
[сила кисти (кг) / масса тела (кг)] х 100
Динамометрия руки в среднем составляет 65--80% массы тела у мужчин и 48--50% у женщин.
Показатель крепости телосложения (по Пинье) выражает разницу между ростом стоя и суммой массы тела и окружностью грудной клетки:
Х = Р -- (В+О)
где: Х -- индекс, Р -- рост (см), В -- масса тела (кг), О -- окружность груди в фазе выдоха (см). Чем меньше разность, тем лучше показатель (при отсутствии ожирения).
Разность меньше 10 оценивается как крепкое телосложение, от 10 до 20 -- хорошее, от 21 до 25 -- среднее, от 25 до 35 -- слабое, более 36 -- очень слабое.
Показатель пропорциональности физического развития = (рост стоя -- рост сидя / рост сидя) х 100
Величина показателя позволяет судить об относительной длине ног: меньше 87% -- малая длина по отношению к длине туловища, 87--92% -- пропорциональное физическое развитие, более 92% -- относительно большая длина ног.
Показатель развития силы мышц спины = [становая динамометрия (кг) / вес (кг)] х 100
Малая сила спины -- меньше 175% своего веса, сила ниже средней -- от 175 до 190%, средняя сила -- от 190 до 210%, сила выше средней -- от 210 до 225%, большая сила -- свыше 225% своего веса.
Измерение кожно-жировой складки имеет существенное значение при отборе в секции гимнастики, балет и др. Удобно и достаточно объективно определять толщину кожно-жировых складок калипером.
Толщина кожно-жировой складки зависит от возраста, пола, телосложения, профессиональной деятельности, занятий спортом, питания и др.
Измерение проводят на правой стороне тела. Kожную складку плотно сжимают большим и указательным пальцами или тремя пальцами так, чтобы в ее составе оказалась бы кожа и подкожный жировой слой. Пальцы располагают приблизительно на 1 см выше места измерения. Ножки калипера прикладывают так, чтобы расстояние от гребешка складки до точки измерения примерно равнялось бы толщине самой складки.
Для определения состава массы тела рекомендуют измерять толщину жировых складок так:
1) под нижним углом лопатки складка измеряется в косом направлении (сверху вниз, изнутри наружу);
2) на задней поверхности плеча складка измеряется при опущенной руке в верхней трети плеча (область трехглавой мышцы, ближе к ее внутреннему краю) -- складка берется вертикально;
3) на передней поверхности груди складка измеряется в верхней трети внутренней поверхности плеча (область двуглавой мышцы);
4) на передневнутренней поверхности в наиболее широком месте -- складка берется вертикально;
5) на передней поверхности груди складка измеряется под грудной мышцей по передней подмышечной линии -- складка берется в косом направлении (сверху вниз, снаружи внутрь);
6) на передней стенке живота складка измеряется на уровне пупка справа на расстоянии 5 см -- берется вертикально;
7) на бедре складка измеряется в положении сидя, ноги согнуты в коленных суставах под прямым углом -- складка измеряется в верхней части бедра на переднелатеральной поверхности параллельно ходу паховой складки, несколько ниже ее;
8) на голени складка измеряется в том же исходном положении, что и на бедре -- берется почти вертикально на заднелатеральной поверхности верхней части правой голени на уровне подколенной ямки;
9) на тыльной поверхности кисти складка измеряется на уровне головки третьего пальца. Толщину подкожного жирового слоя определяют как 1/2 от средней величины всех измерений.
Для расчета плотности тела по регрессивному уравнению, выведенному Paskall и соавт. (1956), рекомендуется исходить из толщины подкожной жировой складки, измеренной в трех местах: 1) по средней подмышечной линии на уровне мечевидного отростка грудной кости (Т.-thorax); 2) на груди на середине расстояния между передней подмышечной линией и соском (М.-mammalia); 3) на задней поверхности плеча (А.-arm).
Определение плотности и состава массы тела
Плотность тела (Д) может быть рассчитана по формуле Pascall и соответствует:
Д = 1,088468 -- 0,007123Т -- 0,004834М -- 0,005513А
где: Т, М, А -- толщина указанных жировых складок в сантиметрах.
Состав массы тела зависит от физической активности человека и питания. Чтобы правильно оценить изменения состава массы тела, надо знать состав тканей. K активной массе тела относят клеточную воду (жидкость), все белки и все минеральные соли в клетках и во внеклеточной жидкости (то есть вне скелета). K малоактивной массе тела относят жир тела, костные минеральные соли и внеклеточную воду. Для выявления состава массы тела обычно определяют общее и подкожное содержание жира, мышечную и скелетную массу в абсолютных и относительных величинах. Измерение толщины подкожного жирового слоя позволяет достаточно точно определить эти показатели расчетным путем. Достаточно надежно абсолютное содержание жира определяется формулой Matiegka (1921):
Д = d х S х k,
где: Д -- общее количество жира (кг), d -- средняя толщина слоя подкожного жира вместе с кожей (мм), S -- поверхность тела (см2) (см. рис. Номограмма для определения поверхности тела по росту и массе тела), k -- константа, равная 0,13, полученная экспериментальным путем на анатомическом материале. Средняя толщина подкожного жира вместе с кожей вычисляется следующим образом:
d = (d1 + d2 + d3 + d4 + d5 + d6 + d7 + d8) / 16
где: d1...d8 -- толщина кожных жировые складок (мм) на плече спереди (d1), на плече сзади (d2), на предплечье (d3), на спине (d4), на животе (d5), на бедре (d6), на голени (d7), на груди (d8).
Номограмма для определения поверхности тела по росту и массе тела (по Дю Буа, Бутби, Сандифорду)
Для определения d у женщин используют 7 складок, d8 не измеряется. Соответственно в знаменателе формулы цифра 16 заменяется на 14.
Этот способ определения общего жира может быть использован у людей разного пола в возрасте 16 лет и старше.
Относительное содержание жира в процентах к массе тела определяется по формуле:
процентное содержание жира = (Д х 100) / W
где: Д -- весь жир (кг), W -- масса тела (кг). Для определения процентного содержания жира удобно пользоваться таблицами, предложенными Pazziskova (1961).
Для определения массы подкожнсго жира обычно используют формулу Matiegka:
Д = 0,9 х S х d1
где: Д -- подкожный жир (кг), S -- абсолютная поверхность тела (см2), d1 -- средняя толщина подкожного жирового слоя без кожи (мм).
d1 = (8 кожных складок / 16) -- (кожная складка на тыльной поверхности кисти / 2)
0,9 -- константа для удельного веса жира.
Определение абсолютной мышечной массы
Для определения абсолютной мышечной массы используют формулу Matiegka (1921):
M = L х r2 х k
где: М -- абсолютная масса мышечной ткани (кг), L -- длина тела (см), r -- среднее значение радиуса плеча (а), предплечья (б), бедра (в) и голени (г) без подкожного жира и кожи (см); k -- константа, равная 6,5.
Радиусы сегментов экстремитатов (r) рассчитывают по результатам измерения соответствующих обхватов с вычетом средней толщины подкожного жира:
(сумма обхватов а, б, в, г / 25,12) -- (сумма толщины жировых складок (а) спереди, (б, в, г) сзади / 100)
Для определения тощей массы тела (LВМ) пользуются формулами:
LВМ для мужчин = 0,676L -- 56,6 ± 6,7 кг
LВМ для женщин = 0,328W + 21,7 ± 4,2 кг
1.“Стресс” и неспецифические реакции организма на средовые воздействия
Исследования реакций и состояний организма в ответ на экстремальные воздействия были начаты еще Ч. Дарвиным (1872). Им проводилось изучение эмоциональных аффектов человека и животных и было обращено внимание на общность и различия изучаемых эмоциональных проявлений [Ч. Дарвин, 1953]. В исследованиях W. B. Cannon (1927) было показано значение симпатико-адреналовой системы в механизмах экстренной мобилизации организма при эмоциогенных реакциях. В работах И. П. Павлова (1900 и др.) и его учеников А. Д. Сперанского (1935, 1936, 1955), М. К. Петровой (1946, 1955), К. М. Быкова (1947, 1960) было доказано, что в результате воздействия чрезвычайных раздражителей возникают генерализованные нарушения трофики, заболевания внутренних органов. А. Д. Сперанский (1935) в своей монографии “Элементы построения теории медицины”, основываясь на полученных им экспериментальных данных об однотипных изменениях нервной системы и наличии генерализованного процесса в виде нарушений трофики, кровоизлияний, изъязвлений в желудке и кишечнике, изменения надпочечников и других органов, делает заключение о стандартных формах реагирования организма на действие чрезвычайных раздражений. Причем в работах А. Д. Сперанского говорится о ведущей роли нервной системы в реализации этих однотипных генерализованных ответных реакций и о том, что именно нервная система определяет целостный характер реакций и те многозвеньевые механизмы, которые участвуют в осуществлении адаптационно-компенсаторных процессов организма [обзор Б. М. Федорова, 1990].
Однако начало “эры общего адаптационного синдрома” положено в попытках честолюбивого канадского ученого Г. Селье открыть новый гормон. Вскрывая трупы умерщвленных им лабораторных животных, которым предварительно вводились экстракты яичников и плаценты или раствор формалина, H. Selye (1936) обнаружил комплекс схожих изменений в различных органах и тканях исследуемого материала. Об этом было сообщено в 1936 г. в журнале “Nature” [Н. Sеlye, “Syndrome produced by Diverse Nocuous Agents”, 1936]. В связи со сказанным Г. Селье (1960) о “ключе к пониманию и оценке…”: обнаружение им общих (позднее – “неспецифических”) структурных изменений в трупах лабораторных объектов, подвергшихся прижизненному действию разнообразных факторов – как раз являлось неоспоримым и прежде всего физиологическим фактом, требующим своего объяснения.
Отвечая на поставленный им самим вопрос о степени неспецифичности обнаруженного им синдрома, Г. Селье (1960) говорит: “…мы не видели вредных стимулов, которые не могли бы вызвать наш синдром”. Показательно, что первоначально вместо термина “стресс” при характеристике открытого им синдрома автор использовал термины “повреждающий” или “вредный” [H. Selye, 1936].
В первой опубликованной в нашей стране монографии Г. Селье (1960) “звучит” текст, который, казалось бы, раз и навсегда должен был определить строгие физиологические рамки изучения и использования открытого им синдрома: “Мы назвали этот синдром “общим” потому, что он вызывается лишь теми агентами, которые приводят к общему состоянию стресса …, и, в свою очередь, вызывает генерализованное, т. е. системное защитное явление”. Эти рамки тем более должны быть “неприкосновенны”, если учесть признание H. Selye, сделанное им в 1952 году : “сегодня, … мне стыдно сказать, что, несмотря на все … возможности, я не сумел прибавить ничего значительного к результатам первых примитивных экспериментов и наблюдений, проделанных в 1936 году” [Г. Селье, 1960].
Следует специально выделить факт, замеченный в этих ранних исследованиях самим H. Selye (1936 и др.), но так и оставленный без должного внимания и им самим, и его многочисленными последователями. Здесь имеется в виду отмеченная ученым уже в первых экспериментах различная выраженность обнаруженных неспецифических изменений в исследуемом посмертном материале (органах и тканях лабораторных животных), появление которых (по мнению Г. Селье, 1960) было обусловлено прижизненным воздействием различных активных факторов. Более того, вполне приемлемый и абсолютно отвечавший полученным в экспериментах 1936 года данным термин “повреждающее воздействие” не удовлетворял Г. Селье прежде всего в связи с результатами новых экспериментов. Оказалось, что “даже такие вполне физиологические стимулы, как кратковременное мышечное напряжение, психическое возбуждение или кратковременное охлаждение, уже вызывают определенные проявления реакции тревоги, например стимуляцию коры надпочечников” [Г. Селье, 1960]. Нетрудно заметить, что здесь речь уже не идет о синдроме, включающем “триаду” обнаруженных H. Selye в 1936 году изменений, полученных в ответ на экстремальные повреждающие воздействия – “в то время объективная регистрация стресса зависела от появления грубых структурных нарушений, которые вызывались лишь наиболее сильными стрессорами” [H. Selye, 1952].
В конечном итоге Г. Селье просто объединил все раздражители единым термином “стрессор”, а любые реакции организма на внешние и внутренние воздействия предложил считать “стрессом”. Более того, в поздних работах Г. Селье “стресс” уже перестал быть генерализованной реакцией организма, а стал характеристикой любых неспецифических проявлений на любом уровне организации живой материи [С. Е. Павлов, 2000]. И, как ни странно, такое превращение реального физиологического термина в нечто абсолютно неконкретное (“Слово “стресс” характеризуется как один из наиболее неточных терминов научного словаря и сравнивается со словом грех: оба эти слова обозначают разные вещи для разных людей, оба они являются короткими и эмоционально насыщенными, выражающими нечто такое, что в противном случае пришлось бы описывать с помощью пространных выражений” - У. Седерберг, 1970; “стремление все неспецифические изменения, возникающие в ... организме, трактовать как проявление стресс-реакции делает это понятие расплывчатым и крайне неопределенным” - П. Д. Горизонтов, Т. Н. Протасова, 1968) было безоговорочно принято научным большинством.
Однако именно результаты, полученные Г. Селье в его ранних и последующих исследованиях и несогласие с выдвинутой им концепцией “общего адаптационного синдрома” стимулировало ряд отечественных ученых на изучение особенностей реагирования живого организма на раздражители различной силы. В частности было замечено, что “не все раздражители вызывают однотипную стандартную гормональную реакцию” [П. Д. Горизонтов, Т. Н. Протасова, 1968]. В результате многолетних исследований группы советских ученых были получены результаты, свидетельствующие о том, что организм по разному реагирует на раздражители различной силы [Л. X. Гаркави, 1968a,b; М. А. Уколова, Ю. Н. Бордюшков, Л. X. Гаркави, 1968; Л. X. Гаркави, 1969; М. А. Уколова, Л. X. Гаркави, Е. Б. Квакина, 1970; Е. Б. Квакина, М. А. Уколова, 1969; Е. Б. Квакина, 1972; Л. X. Гаркави, Е. Б. Квакина, 1975; Е. Б. Квакина, Л. X. Гаркави, 1975; Л. X. Гаркави, Е. Б. Квакина, М. А. Уколова, 1977]. Ими были выделены: неспецифическая реакция организма на действие слабых раздражителей (“реакция тренировки”), неспецифическая реакция организма на действие раздражителей средней силы (“реакция активации”) и неспецифическая реакция организма на сильные воздействия (“реакция стресс”) [Л. X. Гаркави, Е. Б. Квакина, М. А. Уколова, 1977, 1979]. Стоит предположить, что “чрезмерные” по силе воздействия должны приводить к изменениям в организме человека или животного, несовместимым с его жизнью и служить причиной, его смерти, а следовательно реакции организма на эти воздействия уже не могут рассматриваться в курсе нормальной физиологии [С. Е. Павлов, 2000, 2001].
2.Основные положения теории адаптации Селье-Меерсона
Тем не менее, результаты вышеуказанных исследований [Л. X. Гаркави, Е. Б. Квакина, М. А. Уколова, 1977, 1979; и др.] были проигнорированы именитым большинством, безоговорочно вставшим на позиции Г. Селье не только в плане принятия его концепции об “общем адаптационном синдроме”, но и в отношении “узаконивания” его представлений о собственно процессе адаптации. В 70-80-х годах сегодня уже прошлого столетия “на свет” появился целый ряд работ, развивающих представления Г. Селье в отношении процесса адаптации в целом. Из этих работ наиболее известны труды Ф. З. Меерсона (1981), Ф. З. Меерсона, М. Г. Пшенниковой (1988) и В. Н. Платонова (1988).
Ф. З. Меерсон (1981) и Ф. З. Меерсон, М. Г. Пшенникова (1988) определяют “индивидуальную адаптацию”, как “развивающийся в ходе жизни процесс, в результате которого организм приобретает устойчивость к определенному фактору окружающей среды и, таким образом, получает возможность жить в условиях, ранее несовместимых с жизнью и решать задачи, прежде неразрешимые”. Эти же авторы разделяют процесс адаптации на “срочную” и “долговременную” адаптации.
Срочная адаптация по Ф. З. Меерсону (1981) – это по сути экстренное функциональное приспособление организма к совершаемой этим организмом работе.
Долговременная адаптация по Ф. З. Меерсону (1981) и В. Н. Платонову (1988, 1997) – структурные перестройки в организме, происходящие вследствие накопления в организме эффектов многократно повторенной срочной адаптации (так называемый “кумулятивный эффект” в спортивной педагогике – Н. И. Волков, 1986)
Основой долговременной адаптации по Ф. З. Меерсону (1981) является активация синтеза нуклеиновых кислот и белка. В процессе долговременной адаптации по Ф. З. Меерсону (1981) растет масса и увеличивается мощность внутриклеточных систем транспорта кислорода, питательных и биологически активных веществ, завершается формирование доминирующих функциональных систем, наблюдаются специфические морфологические изменения во всех органах, ответственных за адаптацию.
В целом представление о процессе адаптации Ф. З. Меерсона (1981) и его последователей укладывается в концепцию, согласно которой вследствие многократного повторения “стрессовых” воздействий на организм столь же многократно запускаются механизмы “срочной” адаптации, оставляющие “следы”, которые уже инициируют запуск процессов долговременной адаптации. В дальнейшем происходит чередование циклов “адаптация” - “деадаптация” - “реадаптация”. При этом “адаптация” характеризуется увеличением мощности (функциональной и структурной) физиологических систем организма с неизбежной гипертрофией рабочих органов и тканей. В свою очередь “деадаптация” - потеря органами и тканями свойств, приобретенных ими в процессе долговременной адаптации, а “реадаптация” - повторная адаптация организма к неким действующим факторам (в спорте – к “физическим нагрузкам”).
В. Н. Платонов (1997) выделяет три стадии срочных адаптационных реакций:
Первая стадия связана с активизацией деятельности различных компонентов функциональной системы, обеспечивающей выполнение данной работы. Это выражается в резком увеличении ЧСС, уровня вентиляции легких, потребления кислорода, накопления лактата в крови и т. д.
Вторая стадия наступает, когда деятельность функциональной системы протекает при стабильных характеристиках основных параметров ее обеспечения, в так называемом устойчивом состоянии.
Третья стадия характеризуется нарушением установившегося баланса между запросом и его удовлетворением в силу утомления нервных центров, обеспечивающих регуляцию движений и исчерпанием углеводных ресурсов организма.
Формирование “долговременных адаптационных реакций” (сохранена авторская редакция) по мнению В. Н. Платонова (1997) так же протекает стадийно:
Первая стадия связана с систематической мобилизацией функциональных ресурсов организма спортсмена в процессе выполнения тренировочных программ определенной направленности с целью стимуляции механизмов долговременной адаптации на основе суммирования эффектов многократно повторяющейся срочной адаптации.
Во второй стадии на фоне планомерно возрастающих и систематически повторяющихся нагрузок происходит интенсивное протекание структурных и функциональных преобразований в органах и тканях соответствующей функциональной системы. В конце этой стадии наблюдается необходимая гипертрофия органов, слаженность деятельности различных звеньев и механизмов, обеспечивающих эффективную деятельность функциональной системы в новых условиях.
Третью стадию отличает устойчивая долговременная адаптация, выражающаяся в наличии необходимого резерва для обеспечения нового уровня функционирования системы, стабильности функциональных структур, тесной взаимосвязи регуляторных и исполнительных механизмов.
Четвертая стадия наступает при нерационально построенной, обычно излишне напряженной тренировке, неполноценном питании и восстановлении и характеризуется изнашиванием отдельных компонентов функциональной системы.
2.1.Адаптационные изменения в сердечно-сосудистой системе
2.1.1.Адаптационные изменения миокарда
Сердце, адаптированное к физической нагрузке, обладает высокой сократительной способностью. Но оно сохраняет высокую способность к расслаблению в диастоле при высокой частоте сокращений, что обусловлено улучшением процессов регуляции обмена в миокарде и соответствующим увеличением его массы (гипертрофией сердца).
Гипертрофия — нормальный морфологический феномен усиленной сократительной деятельности (гиперфункции) сердца. Если плотность капиллярного русла на единицу массы сердца при этом повышается или сохраняется на уровне, свойственном нормальному миокарду, гипертрофия происходит в обычных физиологических рамках. Сердечная мышца не испытывает недостатка в кислороде при напряженной работе. Более того, функциональная нагрузка на единицу сердечной массы падает. Следовательно, и тяжелая физическая нагрузка будет переноситься сердцем с меньшим функциональным напряжением.
Истощение источников энергии при напряженных нагрузках стимулирует синтез белковых структур клеточных элементов: как сократительных, так и энергетических (митохондриальных). Если истощение источников энергии превышает физиологические нормы, может наступить перенапряжение, срыв адаптации. В нормально развитом сердце на 1 мм3 мышечной массы в покое раскрыты 2300 капилляров. При мышечной работе раскрываются дополнительно около 2000 капилляров. Долговременная адаптация обеспечивается усилением биосинтетических процессов в сердечной мышце и увеличением ее массы. При периодических физических нагрузках адаптация сердца растягивается во времени, периоды отдыха от нагрузок приводят к сбалансированному увеличению структурных элементов сердца. Масса сердца увеличивается в пределах 20-40%. Капиллярная сеть растет пропорционально увеличивающейся массе. Тренированное, умеренно гипертрофированное сердце в условиях относительного физиологического покоя имеет пониженный обмен, умеренную брадикардию, сниженный минутный объем. Оно работает на 15-20% экономичнее, чем нетренированное. При систематической мышечной работе в сердечной мышце тренированного сердца снижается скорость гликолитических процессов: энергетические продукты расходуются более экономно.
Морфологические перестройки сердца проявляются в увеличении как мышечной массы, так и клеточных энергетических машин — митохондрий. Увеличивается также масса мембранных систем. Иначе говоря, чувствительность сердца к симпатическим влияниям, усиливающим его функции, при мышечной работе повышается. Одновременно совершенствуются и механизмы экономизации: в покое и при малоинтенсивной нагрузке сердце работает с низкими энергозатратами и наиболее рациональным соотношением фаз сокращения.
Если сократительная масса сердца увеличивается на 20-40%, то функциональная нагрузка на единицу массы уменьшается на соответствующую величину. Это один из наиболее надежных и эффективных механизмов сохранения потенциальных ресурсов сердца.
Как свидетельствует практический опыт, юные спортсмены, имеющие физиологически гипертрофированное сердце, хорошо адаптируются к физическим нагрузкам умеренной мощности. При выполнении нагрузки предельной мощности у них отчетливо проявляется гипердинамический синдром. Восстановительные процессы отличаются высокой скоростью. Полезная производительность сердца возрастает по сравнению с нетренированным примерно в два раза. Между тем нагрузка на единицу массы тренированного сердца при максимальной работе возрастает до 25%. Иначе говоря, перегрузка такого сердца практически исключается даже при весьма напряженной мышечной работе, характерной для современного спорта.
Увеличение ЧСС и сократительной способности сердца - естественные адаптивные реакции на нагрузку. Не случайно ЧСС сохраняет свою значимость как показатель адаптации сердца при использовании любых, самых современных функциональных проб с физической нагрузкой. Мышечная работа требует повышенного притока кислорода и субстратов к мышцам. Это обеспечивается увеличенным объемом кровотока через работающие мышцы. Поэтому увеличение минутного объема кровотока при работе - один из наиболее надежных механизмов срочной адаптации к динамической нагрузке. В нетренированном сердце взрослого человека резервы повышения ударного объема крови исчерпываются уже при ЧСС 120-130 уд /мин. Дальнейший рост минутного объема происходит только за счет ЧСС. По мере роста тренированности расширяется диапазон ЧСС, в пределах которого ударный объем крови продолжает увеличиваться. У высокотренированных спортсменов и детей он продолжает нарастать и при ЧСС 150-160 уд /мин.
В самой сердечной мышце срочные адаптацтонные изменения проявляются в мобилизации энергетических ресурсов. Первичными субстратами окисления в сердечной мышце служат жирные кислоты, глюкоза, в меньшей степени - аминокислоты. Энергия их окисления аккумулируется митохондриями в виде АТФ, а затем транспортируется к сократительным элементам сердца.
При повышении ударного объема крови сокращения сердца учащаются. Происходит это вследствие более эффективного использования энергии АТФ. Повышение сократительной способности сердца сочетается с совершенствованием восстановительных процессов во время диастолы [Я. М. Коц, 1983].
2.2.Адаптационные изменения систем дыхания и крови
2.2.1.Адаптационные изменения системы внешнего дыхания.
Мышечная работа вызывает многократное (в 15-20 раз) увеличение объема легочной вентиляции. У спортсменов, тренирующихся преимущественно на выносливость, минутный объем легочной вентиляции достигает 130-150 л/мин и более. У нетренированных людей увеличение легочной вентиляции при работе Является результатом учащения дыхания. У спортсменов при высокой частоте дыхания растет и глубина дыхания. Это наиболее рациональный способ срочной адаптации дыхательного аппарата к нагрузке. Достижение предельных величин легочной вентиляции, что свойственно высококвалифицированным спортсменам, является результатом высокой согласованности актов с сокращением дыхательных мышц, а также с движениями в пространстве и во времени: расстройство координации в работе дыхательных мышц нарушает ритм дыхания и приводит к ухудшению легочной вентиляции.
Решающая роль в нарастании объема легочной вентиляции в начале работы принадлежит нейрогенным механизмам. Импульсация от сокращающихся скелетных мышц, а также нисходящие нервные импульсы из двигательных зон коры полушарий большого мозга стимулируют дыхательный центр. Гуморальные факторы регуляции включаются позже, при продолжающейся работе и достижении адекватных ей величин легочной вентиляции. Регуляторная роль СО2 проявляется в поддержании необходимой частоты дыхания и установлении необходимого соответствия легочной вентиляции величине физической нагрузки.
Систематическая мышечная деятельность сопровождается увеличением силы дыхательной мускулатуры. Отчетливо растет мощность дыхательных движений. Скорость движения воздушной струи у спортсменов достигает 7-7,5 л/с на вдохе и 5-6 л/с на выдохе. У нетренированных людей мощность вдоха не превышает 5-5,5 л/с, выдоха - 5 л/с.
Важным физиологическим механизмом повышения эффективности внешнего дыхания является закрепление условнорефлекторных связей, обеспечивающих согласование дыхания с длительностью выполнения отдельных частей целостного акта (например, при плавании). В этом отчетливо проявляется системный характер управления физиологическими функциями [Я. М. Коц, 1983].
2.2.2.Адаптационные изменения системы крови.
Первичной ответной реакцией системы крови на физическую нагрузку являются изменения в составе форменных элементов крови. Наиболее отчетливы сдвиги в так называемой белой крови — лейкоцитах. Миогенный лейкоцитоз характеризуется преимущественным увеличением зернистых лейкоцитов в общем кровотоке. Одновременно происходит разрушение части лейкоцитов: при напряженной физической нагрузке резко уменьшается число эозинофилов. Структурный материал, образующийся при их распаде, идет на пластические нужды, на восстановление и биосинтез клеточных структур.
Физическая нагрузка, связанная с эмоциональными напряжениями, вызывает более значительные сдвиги в составе крови. Увеличение числа эритроцитов в крови - надежный инструмент повышения устойчивости к мышечной гипоксии. Нормальная лейкоцитарная формула после физических нагрузок восстанавливается, как правило, в течение суток. Система так называемой красной крови восстанавливается медленнее: через 24 часа отдыха сохраняются и увеличенное число эритроцитов, и незрелые их формы - ретикулоциты. У спортсменов 16-18 лет после напряженной мышечной работы появляются также и незрелые формы тромбоцитов. В результате мышечной деятельности активизируется система свертывания крови. Это одно из проявлений срочной адаптации организма к воздействию физических нагрузок. В процессе активной двигательной деятельности возможны травмы с последующим кровотечением. Программируя “с опережением” такую ситуацию, организм повышает защитную функцию системы свертывания крови. Это своеобразная адаптация впрок, на случай повреждений при мышечной работе. Восстановление системы свертывания крови происходит в течение 24-36 часов после нагрузки [Я. М. Коц, 1983].
2.3.Роль гипоталамо-гипофизарно-надпочечниковой системы в процессе адаптации
Структурные изменения на клеточном и органном уровнях при физических нагрузках начинаются с мобилизации эндокринной функции, и в первую очередь — гормональной системы гипоталамус—гипофиз—надпочечники. Схематически это выглядит следующим образом. Гипоталамус преобразует нервный сигнал реальной или предстоящей физической нагрузки в эфферентный, управляющий, гормональный сигнал. В гипоталамусе освобождаются гормоны, активирующие гормональную функцию гипофиза. Ведущую роль в выработке адаптивных реакций среди этих гормонов играет кортиколиберин. Под его влиянием освобождается адренокортикотропный гормон гипофиза (АКТГ), который вызывает мобилизацию надпочечников. Гормоны надпочечников повышают устойчивость организма к физическим напряжениям.
В обычных условиях жизнедеятельности организма уровень АКТГ в крови служит и регулятором его секреции гипофизом. При увеличении содержания АКТГ в крови его секреция автоматически затормаживается. Но при напряженной физической нагрузке система автоматической регуляции изменяется. Интересы организма в период адаптации требуют интенсивной функции надпочечников, которая стимулируется повышением концентрации АКТГ в крови.
Адаптация к физической нагрузке сопровождается и структурными изменениями в тканях надпочечников. Эти изменения приводят к усилению синтеза кортикоидных гормонов. Глюкокортикоидный ряд гормонов активирует ферменты, ускоряющие образование пировиноградной кислоты и использование ее в качестве энергетического материала в окислительном цикле. Одновременно стимулируются и процессы ресинтеза гликогена в печени. Глюкокортикоиды повышают и энергетические процессы в клетке, освобождают биологически активные вещества, которые стимулируют устойчивость организма к внешним воздействиям.
Гормональная функция коры надпочечников во время мышечной работы небольшого объема практически не меняется. Во время большой по объему нагрузки происходит мобилизация этой функции. Неадекватные, чрезмерные нагрузки вызывают угнетение функции. Это своеобразная защитная реакция организма, предупреждающая истощение его функциональных резервов. Секреция гормонов коры надпочечников меняется при систематической мышечной работе в целом по правилу экономизации. Повышенная продукция гормонов мозгового слоя надпочечников способствует росту энергопроизводства, усилению мобилизации гликогена печени и скелетных мышц. Адреналин и его предшественники обеспечивают формирование адаптивных изменений и до начала действия физической нагрузки. Таким образом, гормоны надпочечников способствуют формированию комплекса адаптивных реакций, направленных на повышение устойчивости клеток и тканей организма к действию физических нагрузок. Надо сказать, что этим прекрасным адаптивным эффектом обладают только эндогенные гормоны, т. е. гормоны, выработанные собственными железами организма, а не введенные извне. Использование экзогенных гормонов не имеет физиологического смысла. В функциях мозгового и коркового слоев надпочечников в процессе адаптации к физическим нагрузкам складываются новые соотношения взаимной коррекции. Так, при увеличенной продукции адреналина — гормона мозгового слоя надпочечников — увеличивается и продукция кортикостероидов, сдерживающих его мобилизующую роль. Иначе говоря, создаются условия для оптимального и адекватного нагрузке изменения продукции гормонов мозгового и коркового слоев надпочечников.
3.Основные положения современной теории адаптации
3.1. Некоторые критические замечания к теории адаптации Селье-Меерсона
Тем не менее “теория адаптации” в редакции Ф. З. Меерсона (1981), Ф. З. Меерсона, М. Г. Пшенниковой (1988) и В. Н. Платонова (1988, 1997) не способна дать ответ на целый ряд крайне важных для теории и практики вопросов [С. Е. Павлов, Т. Н. Кузнецова, 1998; С. Е. Павлов, 2000, 2001]. В монографии С. Е. Павлова (2000) целая глава посвящена критическому анализу основных положений “господствующей” (по выражению автора) “теории адаптации”, основные претензии к которой со стороны указанного автора сводятся к следующему:
Неспецифические реакции в “теории адаптации” Ф. З. Меерсона (1981) и его последователей представлены исключительно “стрессом”, который к сегодняшнему дню в редакции большинства авторов напрочь лишен своего изначального физиологического смысла. С другой стороны, возвращение термину “стресс” его изначального физиологического смысла делает процесс адаптации (а следовательно и - жизни) в редакции Ф. З. Меерсона и его последователей дискретным, что уже противоречит и логике и законам физиологии;
“Теория адаптации” в редакции Ф. З. Меерсона (1981), Ф. З. Меерсона, М. Г. Пшенниковой (1988), В. Н. Платонова (1988, 1997) носит преимущественно неспецифическую направленность, что с учетом выхолощенности неспецифического звена адаптации не позволяет считать ее “работающей”;
Представления о процессе адаптации Ф. З. Меерсона (1981) и В. Н. Платонова (1988, 1997) носят недопустимо механистический, примитивный, линейный характер (адаптация-деадаптация-реадаптация), что не отражает сущности сложных, реально протекающих в живом организме физиологических процессов;
В “теории адаптации” проповедуемой Ф. З. Меерсоном (1981) и его последователями проигнорированы принципы системности при оценке происходящих в организме процессов. Более того, их позиция в отношении процесса адаптации никоим образом не может быть названа системной, а, следовательно, предложенная ими “теория адаптации” не применима для ее использования в исследовательской работе и практике;
Разделение единого процесса адаптации на “срочную” и “долговременную” адаптации физиологически необоснованно;
Терминологическая база “господствующей теории адаптации” не соответствует физиологическому содержанию происходящего в целостном организме процесса адаптации
Если встать на позиции “теории адаптации” Селье-Меерсона, то следует признать, что лучшими спортсменами во всех видах спорта должны быть культуристы – именно у них максимально развиты все группы мышц. Тем не менее это не так. И кстати сегодняшнее понимание термина “тренированность” (в большей степени педагогического понятия) ни в коей мере не соответствует физиологическим реалиям как раз в связи с неприятием спортивно-педагогическим большинством физиологических реалий [С. Е. Павлов, 2000];
Сила мышц
соматоскопия антропометрия мышечный силовой
Силу мышц определяют по максимальному проявлению усилия, которое может развить группа мышц в определенных условиях. Обычно одновременно сокращается целая группа мышц, поэтому трудно точно определить работу каждой отдельной мышцы в суммарном проявлении силы. Кроме того, в действии мышц участвуют костные рычаги.
Различают три вида мышечного сокращения: изометрическое, концентрическое (миометрическое) и эксцентрическое (или ометрическое). Сокращение мышцы, при котором она развивает напряжение, но не изменяет своей длины, называется изометрическим. Такое сокращение проявляется в виде статической силы. Мерой концентрической силы является максимальное сопротивление, которое мышцы способны преодолевать на пути соответствующего движения. Эта разновидность силы обозначается как динамическая. Эксцентричная сила возникает при сопротивлении внешней силы под влиянием которой мышцы растягиваются, то есть длина их увеличивается. Для большинства видов мышечной работы характерен ауксотонический режим, в котором сочетается сокращение и напряжение.
Определение динамической силы весьма сложно, поэтому обычно ограничиваются измерением статической (изометрической) силы и выносливости мышц.
Мужчины достигают максимума изометрической силы в возрасте около 30 лет, потом сила уменьшается. Этот процесс быстрее идет в крупных мышцах нижних конечностей и туловища. Сила рук сохраняется дольше. В таблице "Средние значения изометрической силы некоторых мышечных групп" приведены показатели силы различных мышечных групп, полученных при обследовании около 600 человек (средний рост мужчин 171 см, женщин -- 167 см).
Средние значения изометрической силы некоторых мышечных групп в зависимости от возраста (по E. Asmussen, 1968)
|
|
|
|
|
|
|
|
|
|
|
|
Показатель (кг) |
Возраст, лет |
|
|
|
|
|
|
|
|
|
|
|
20 |
25 |
35 |
45 |
55 |
|
|
|
|
|
|
|
муж. |
жен. |
муж. |
жен. |
муж. |
жен. |
муж. |
жен. |
муж. |
жен. |
|
Сила кисти (±16%)* |
55,9 |
37,5 |
59,9 |
38,5 |
58,8 |
38,0 |
55,6 |
35,6 |
51,6 |
32,7 |
|
Сила разгибателей туловища (±16%) |
81,6 |
56,6 |
87,4 |
58,3 |
90,7 |
59,2 |
89,8 |
57,7 |
85,7 |
49,1 |
|
Сила сгибателей туловища (±17%) |
60,6 |
40,9 |
64,2 |
42,2 |
66,7 |
42,4 |
66,0 |
41,5 |
63,0 |
33,6 |
|
Сила разгибателей ног сидя (±18,5%) |
295 |
214 |
310 |
225 |
312 |
212 |
296 |
197 |
263 |
162 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Коэффициент вариации
Динамическую силу можно измерить, например, методом поднятия тяжести. Сила идентичных групп мышц у разных людей неодинакова. Показатели силы у взрослых женщин ниже на 30--35% по сравнению с мужчинами.
Сила измеряется динамометрами различной конструкции.
Для определения силы кисти обычно используют динамометр Kоллена. Силу разгибателей туловища измеряют с помощью станового динамометра. Для более полного представления о мышечной системе следует дополнительно измерять силу мышц плеча и плечевого пояса, разгибаталей бедра и голени, а также сгибателей туловища. С этой целью используют универсальные динамометрические установки (см. рис. Динамометрическая установка для измерения силы разных мышечных групп).
Динамометрическая установка для измерения силы разных мышечных групп
В результате тренировки мышечная сила значительно возрастает, но снижается при утомлении (особенно хроническом), различных заболеваниях опорно-двигательного аппарата, во время посещения сауны (бани), при приеме гипертермических ванн и др.
Измерение гибкости и подвижности
Измерение гибкости (подвижности) позвоночного столба.
Гибкостью называется способность выполнять движения широкой амплитуды. Мерой гибкости является максимум амплитуды движений. Различают активную и пассивную гибкость. Активная выполняется самим испытуемым, пассивная -- под влиянием внешней силы (у больных -- с помощью методиста ЛФK, в спорте -- тренера). Гибкость зависит от состояния суставов, эластичности (растяжимости) связок, мышц, возраста, температуры окружающей среды, биоритмов, времени суток и др.
С практической точки зрения наибольшее значение имеет гибкость позвоночника, которую определяют измерением амплитуды движений при максимальном сгибании, разгибании, наклонах в стороны и ротации туловища вокруг продольной оси тела. Обычно гибкость определяется по способности человека наклониться вперед, стоя на простейшем устройстве (см. рис. Измерение гибкости позвоночника). Перемещающаяся планка, на которой в сантиметрах нанесены деления от нуля (на уровне поверхности скамейки), показывает уровень гибкости.
Измерение гибкости позвоночника
Подвижностью в суставах принято считать перемещение сочлененных в суставе костей друг относительно друга. Степень ее зависит от формы суставных поверхностей и эластичности мышечно-связочного аппарата. Подвижность в суставах выявляется при пассивных и активных движениях. Пассивные движения осуществляются под действием посторонних лиц, активные -- самим человеком. На величину подвижности в суставах влияют возраст, пол, вид спорта, а также гипертонус мускулатуры, заболевания суставов и др.
При измерениях подвижности в суставах используют браншевый гониометр, состоящий из подвижной бранши и гравитационного гониометра (в градусах). Подвижность в суставе определяется в состоянии сгибания и разгибания. В некоторых видах спорта (гимнастика, акробатика) для увеличения подвижности в суставах применяют пассивные движения (спортсмены работают парами или с помощью тренера), что нередко приводит к травмам и заболеваниям суставов (в последующие годы возникает артроз суставов). Суставы имеют физиологическую норму подвижности (см. рис. Объем движений в суставах), и ее насильственное увеличение небезопасно для здоровья.
Объем движений в суставах: а -- верхние конечности; б -- нижние конечности
Осанка анатомически характеризуется формой позвоночника, грудной клетки, взаимным расположением пояса верхних конечностей, рук, туловища, таза и нижних конечностей. В формировании правильной осанки основную роль играют физкультура, питание, бытовые условия, а также климатические и национальные факторы.
Хорошая осанка создает оптимальные условия для деятельности внутренних органов, способствует повышению работоспособности и, конечно, имеет большое эстетическое значение.
Характеристику типов осанки можно дать по результатам гониометрии позвоночного столба (см. рис. Лордозоплеческолиозометр в начале статьи) и визуально.
Силовые индексы получаются делением показателей силы на вес и выражаются в процентах (%). Средними величинами силы кисти у мужчин считаются 70--75% веса, у женщин -- 50--60%; для становой силы у мужчин -- 200--220%, у женщин -- 135--150%. У спортсменов соответственно -- 75--81% и 260--300%; у спортсменок -- 60--70% и 150--200%.
Разностный индекс определяется путем вычитания из роста сидя длины ног. Средний показатель для мужчин 9--10 см, для женщин -- 11--12 см. Чем меньше индекс, тем, следовательно, больше длина ног, и наоборот.
При пользовании некоторыми другими индексами средние величины требуют постоянной корректировки, с учетом тренированности, возраста и пола. И заключение делается только по комплексному обследованию (ЭKГ, биохимия, антропометрия и др.).
Сила и выносливость
Сила и выносливость -- качества, которыми в значительной мере определяется морфофункциональное состояние спортсмена. Вопрос о силе мышц и их выносливости имеет большое значение. Недостаточное развитие мышечной силы и выносливости лимитирует локомоторные возможности спортсмена.
Для исследования силы различных мышц и работоспособности предложено много приборов (динамометры, динамографы, эргографы и др.) разных конструкций.
Основным методом определения силы мышц является динамометрия.
Отмечено, что развитие мышечной силы происходит к 25--35 годам, после чего начинается ее снижение.
Установлено также, что сила мышц в течение дня колеблется и что максимальное проявление мышечной силы наблюдается при внешней температуре +20°. Выносливость -- это способность к длительному выполнению работы. Она развивается, как и другие качества (сила, быстрота, ловкость), тренировками (физическими упражнениями) и имеет важнейшее значение для преодоления утомления, которое возникает во время выполнения работы.
Одним из важных показателей физического развития считают площадь поверхности тела, которая определяется формулой Issakson (1958) для лиц с суммой веса и длины тела больше 160 единиц:
S = [100 + W + (H -- 160)] / 100
где: S -- площадь поверхности тела (м2), W -- вес тела (г), H -- длина тела (см).
Для низкорослых людей с суммой веса и длины тела меньше 160 единиц используют формулу Бойда (Boyd, 1935):
S = 3,207 х H0,3 х W0,7285 -- 0,0188logW
где: S -- площадь тела (см2), H -- длина тела (см), W -- вес тела в граммах.
Площадь поверхности тела целесообразно рассматривать не в абсолютных значениях, а в относительных, в соотношении с массой (весом) тела (количество веса, приходящееся на единицу поверхности. У физически сильных людей на единицу площади поверхности тела приходится больше веса, чем у физически слабых (В.Б. Бунак, 1940; П.Н. Башкиров, 1958 и др.).
Измерение показателей силы мышц. Для сопоставления индивидуальных значений силы отдельных мышечных групп у людей, отличающихся особенностями телосложения, рекомендуется рассчитывать силу мышц относительно веса тела.
Относительная сила мышц рассчитывается по формуле:
Fотн. = Fабс. / W
где Fотн. -- относительная сила (кг), Fабс. -- абсолютная сила (кг), W -- вес тела (кг).
Тесты и оценки силовых показателей и подвижности
Оценку скоростно-силовых показателей можно осуществить с помощью комплекса простых упражнений:
1. Прыжки в джинну с места (в см).
2. Впрыгивание на стул, отталкиваясь двумя ногами от пола (количество раз).
3. Сгибание и разгибание рук в упоре на полу (число отжиманий за 15 с).
4. Подъем ног под прямым углом из виса на прямых руках на гимнастической стенке (количество раз за 15 с).
5. Подтягивание на перекладине (количество раз за 10 с).
6. Поднимание туловища под прямым углом (ноги фиксирует партнер) из положения лежа на спине (количество раз за 30 с).
7. Поднимание туловища (прогибание) из положения лежа на животе, руки вдоль туловища (количество раз за 15 с).
В результате оценки показателей каждого упражнения получают комплексную скоростно-силовую величину.
Оценка силы. Для оценки силовой выносливости рекомендуются следующие упражнения:
1. Приседания (количество приседаний).
2. Выпрыгивание из приседа в высоту (количество выпрыгиваний).
3. Подтягивание (количество раз).
4. Отжимы от пола (количество раз).
5. Из положения лежа на спине переход в положение сидя (количество раз).
6. Из виса на гимнастической стенке подъем прямых ног под прямым углом (количество раз).
Установлена линейная зависимость количества повторений и мышечной силы.
Росто-весовой индекс Хоске рассчитывают по формуле:
(масса тела (кг) х 100) / (рост (см))
Тесты для оценки подвижности в суставах (гибкость).
Подвижность в суставах (гибкость) -- это способность выполнять движения с большим размахом колебаний (с большой амплитудой). Подвижность в суставе (суставах) определяется эластичностью его мышц, сухожилий, связок, возрастом, полом, а также наследственными факторами. Измеряют подвижность гониометром Гамбурцева.
Для отбора в секции гимнастики, акробатики и другие виды спорта, где гибкость играет важную роль, используют тест-шпагат -- продольный и поперечный. За спиной обследуемого устанавливают штатив, планка которого накладывается на голову. Измеряют расстояние от пола до паховой области (в см).
У гимнастической стенки спортсмен берется руками за рейку на уровне плеч и отводит (поднимает) ногу назад. Измеряют расстояние от пола до голеностопного сустава (в см). Еще тест-мостик. Спортсмен в положении лежа на спине подтягивает стопы вплотную к ягодицам, руками опирается на уровне плеч и вытягивается вверх. Измеряются расстояние между ладонями и пятками (в см) и от пола до спины (в см).
Определение содержания воды в массе тела
В организме взрослого человека вода составляет 60--70% всей массы тела. При этом, чем больше содержание жирового компонента, тем меньше содержание воды. И, наоборот, чем выше процент активной массы тела, тем больше в нем содержание воды. Содержание воды в разных тканях неодинаково. В соединительной и опорной тканях ее меньше, чем в печени, селезенке, где она составляет 70--80% (см. таблицу Водный обмен человека).
|
|
|
|
|
|
|
Вода поступает в организм в виде жидкости (48%) и в составе плотной пищи (40%), остальные 12% образуются в процессе метаболизма пищевых веществ.
Поскольку у женщин больше жира в массе тела, у них и воды почти на 10% меньше, чем у мужчин. Организм худощавого человека содержит до 73% воды, которая считается очень константной. Эту воду принято делить на внутриклеточную жидкость и внеклеточную. Внутриклеточная жидкость составляет 40%, внеклеточная -- 20% массы тела. 15% внеклеточной жидкости приходится на лимфу, синовиальную, спинномозговую жидкость и жидкость серозных оболочек. На долю внутрисосудистой жидкости приходится 5% воды. Она содержит воду плазмы и подвижную воду эритроцитов, взаимообменивающуюся с водой плазмы. При обезвоживании (дегидратации) эритроциты теряют часть воды, а при избытке воды в плазме забирают некоторое ее количество. При дегидратации происходит сгущение крови и возникают микротромбы. Поэтому опасно ограничивать себя в приеме жидкости при посещении сауны (бани), при тренировках (особенно во время соревнований) в жарком и влажном климате.
Определение объемов жидкости в составе тела чрезвычайно важно для спортсмена. Измерение (определение) общей массы воды осуществляется радиоизотопным методом (тритий, бром82 и другие радиоизотопы). Общее содержание воды можно определить по формуле E. Osserman et al. (1950):
% общей воды = 100 х (4,340 -- 3,983/d)
где: d -- удельный вес тела.
E. Osserman et al. (1950) отметил, что в организме здоровых мужчин в возрасте от 18 до 46 лет содержится 71,8% воды. E. Mellits A.D. Cheek (1970) предложили уравнение для расчета количества воды и жира в организме на основании антропометрических данных. Они обследовали людей в возрасте от 1 года до 34 лет и установили линейную зависимость содержания воды (в л) в организме от массы тела (в кг):
для мужчин: общее содержание воды = 1,065+0,603 х (масса тела);
для женщин: общее содержание воды = 1,874+0,493 х (масса тела).
Для получения более точных данных авторы рекомендуют использовать уравнения, включающие массу тела и рост:
для мужчин, рост которых больше 132,7 см, общее содержание воды = -21,993+ 0,406 х (масса тела)+0,209 х (рост);
если рост человека меньше 132,7 см, то общее содержание воды в его теле = -1,927+0,465 х (масса тела)+ 0,045 х (рост).
для женщин, рост которых больше 110,8 см, общее содержание воды = -10,313+ 0,252 х (масса тела)+0,154 х (рост);
если рост меньше 110,8 см, общее содержание воды = 0,076+0,507 х (масса тела)+0,013 х (рост).
Таким образом, исследования с измерением различных антропометрических показателей у лиц, занимающихся физкультурой и спортом, позволяют контролировать рост и развитие их физической работоспособности. С точки зрения здоровья особое значение имеет оценка состояния мускулатуры и осанки.
.Организация и проведение врачебно-медицинского контроля за лицами, занимающимися адаптивной физической культурой.
Врачебный контроль осуществляется врачебно- физкультурными диспансерами, а также кабинетами врачебного контроля(или врачами-терапевтами) в поликлиниках, медсанчастях предприятий и организаций, вузах или других учебных заведениях, при добровольных спортивных обществах, на стадионах и других спортивных сооружениях. В Госкомспорте специальный медико-биологический отдел организует совместно с органами здравоохранения врачебный контроль среди ведущих спортсменов и над группами спортивного резерва. Общее руководство врачебного контроля при занятиях физкультурой и спортом возложено на Министерство здравоохранения РФ.
Врачебный контроль исключает: 1)врачебное освидетельствование; 2) врачебно- педагогические наблюдения; 3) врачебно-спортивную консультацию; 4) санитарно-гигиенический надзор за местами и условиями проведения занятий физкультурой и спортом, а также соревнований; 5)гигиеническое воспитание физкультурников и спортсменов; 6) медико-санитарное обеспечение спортивных соревнований и массовых физкультурно-оздоровительных мероприятий.
Врачебное освидетельствование предусматривает обследование лиц, занимающихся физкультурой и спортом, а также приступающих к занятиям впервые. Методика обследования (краткая или углубленная) и его периодичность определяются контингентом занимающихся (их возрастом, полом, спортивной квалификацией) и характером занятий (учебная программы, оздоровительная и лечебная физкультура, спортивная тренировка).
Билет № 28
1. Педагогический контроль за лицами, занимающимися адаптивной физической культурой.самоконтроль.
2. Методики обучения двигательным действиям лиц с нарушениями опорно-двигательного аппарата (характеристика этапов обучения).
3.методы оценки функционального состояния вегетативной нервной системы.
