Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электрические машины 2009 ДКР.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
1.44 Mб
Скачать

Тема 4.2 Магнитное поле асинхронной машины

Содержание программы:

Магнитная цепь асинхронного двигателя. МДС обмотки статора в режиме холостого хода. Основной магнитный поток и потоки рассеяния. Индуктивные сопротивления обмоток асинхронного двигателя. Роль зубцов сердечника в создании электромагнитных сил и наведении ЭДС в обмотке электрической машины.

Литература

[ 1] c.146

Методические указания:

Магнитодвижущая сила обмотки статора созда­ет магнитный поток, который замыкается через эле­менты магнитной системы машины. Магнитную систему асинхронной машины называют неявнополюсной, так как она не имеет явно выра­женных магнитных полюсов.

Помимо основного (главного) магнитного потока Ф, который сцепляется с обмотками статора и ротора, в асинхрон­ной машине имеется еще два магнитных потока, называемых по­токами рассеяния: магнитный поток рассеяния статора Фσ1 и магнитный поток рассеяния ротора Фσ2. Каждый из этих потоков рассеяния сцепляется лишь с собственной обмоткой и наводит в ней ЭДС рассеяния: в обмотке статора Еσ1, в обмотке ротора Еσ2.

Как известно, поверхности сердечников статора и ротора со­стоят из зубцов и пазов, при этом пазовые стороны обмоток рас­положены в пазах, где магнитная индукция намного меньше, чем в зубцах. Однако условия наведения ЭДС в обмотке не меняются и остаются такими же, как если бы пазовые стороны обмотки были расположены на гладкой поверхности сердечника. Объясняется это свойством непрерывности магнитных линий. Согласно этому свойству, магнитные линии вращающегося магнитного поля пере­ходят из одного зубца в другой и пересекают пазовые проводники обмотки, лежащие в пазах между зубцами, наводя в них ЭДС.

Интересно отметить, что электромагнитная сила, возникающая при взаимодействии тока в проводе, лежащем в пазу сердеч­ника, с внешним магнитным полем, приложена главным образом не к проводу, а к зубцам, образующим стенки паза. Это явление переноса механических сил с проводов на зубцы объясняется воз­никновением пондеромоторных сил, которые появляются в магнитном поле на гра­нице раздела двух сред с разной магнитной про­ницаемостью и всегда направлены от среды с большей магнитной про­ницаемостью к среде с меньшей магнитной про­ницаемостью (в рассмат­риваемом случае из зуб­ца в паз)

Вопросы для самопроверки:

  1. Из каких участков состоит магнитная цепь асинхронной машины?

  2. Какова цель расчета магнитной цепи асинхронной машины?

  3. Как влияет выбор значения магнитной индукции в воздушном зазоре на свойства асинхронного двигателя?

  4. Какие марки листовых электротехнических сталей применяют в асинхрон­ных двигателях?

  5. Что учитывает коэффициент воздушного зазора?

  6. Как определить коэффициент магнитного насыщения?

  7. Чем обусловлены индуктивные сопротивления рассеяния обмоток статора и ротора асинхронного двигателя?

  8. Почему электромагнитные силы в асинхронном двигателе приложены глав­ным образом к зубцам сердечника, а не к проводам обмотки?

Тема 4.3 Рабочий процесс трехфазного асинхронного двигателя

Содержание программы:

Аналогия между асинхронной машиной и трансформатором. Управления ЭДС асинхронного двигателя (АД) при неподвижном и вращающемся роторе. Понятие о скольжении асинхронной машины. Частота ЭДС, наведенной в обмотке ротора. Управление МДС и токов АД. Приведение параметров обмотки ротора к параметрам обмотки статора. Векторная диаграмма и схема замещения АД. Потери и КПД асинхронного двигателя.

Литература

[ 1] c.154; [ 2 ] c.95

Методические указания:

Приведение величин цепи ротора к числу витков обмотки статора, как и в трансформаторах, производят для удоб­ства сопоставления величин первичной и вторичной обмо­ток и изображения их в одном масштабе, а также для по­лучения более простой схемы замещения.

Суть приведения состоит в том, что реальный ротор с числом фаз m2 и числом витков в обмотке w2 заменяете ротором, у которого число фаз и число витков в обмотке приняты такими же, как и у статора. При этом мощность, потери и МДС в приведенном роторе должны сохранить те же значения, что и в реальном роторе. Величины приведенного ротора обозначают теми же символами, что и неприведенного, но со штрихом. При приведении величин вторичной обмотки (ротора) к числу витков первичной обмотки следует иметь в виду, что для двигателей с фазным ротором число фаз ротора рав­но числу фаз статора, т.е. m2 = m1 а для двигателей с короткозамкнутым ротором число фаз ротора равно числу стержней короткозамкнутой обмотки, т. е. m2=N2; w2= 0,5; kw2=i1

Векторная диаграмма асинхронного двигателя яв­ляется графической иллюст­рацией уравнений. Поскольку уравне­ния асинхронного двигателя при неподвижном роторе совпадают с уравнениями транс­форматора, их векторные диаграммы также аналогичны.

Для расчета характеристик асинхронной машины и ис­следования различных режимов ее работы удобно исполь­зовать схемы замещения. При этом реальная асинхронная машина с электромагнитными связями между обмотками заменяется относительно простой электрической цепью, что позволяет существенно упростить расчет характеристик. Очевидно, что при переходе к схеме замещения уравнения для этой схемы должны полностью соответствовать урав­нениям, описывающим рабочий процесс асинхронной ма­шины.

Вопросы для самопроверки:

  1. В чем сходство и в чем различие между асинхронным двигателем и транс­форматором?

  2. Почему с увеличением механической нагрузки на вал асинхронного двигате­ля возрастает потребляемая из сети двигателем мощность?

  1. Каков порядок построения векторной диаграммы двигателя?

  1. В чем отличие Г-образной схемы замещения от Т-образной?