Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материаловедение Microsoft Word (3).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
514.13 Кб
Скачать

38.Магний и магниевые сплавы

Магний является химически активным металлом: образующаяся на воздухе оксидная пленка МдО в силу более высокой плотности, чем у самого магния, растрескивается и не имеет защитных свойств; порошок и стружка магния легко воспламеняются; горячий и расплавленный магний при контакте с водой происходит взрыв.

Магний и его сплавы плохо сопротивляются коррозии, обладают пониженной жидкотекучестью при литье, пластически деформируются лишь при повышенных температурах (225 °C и более). Последнее обусловлено тем, что сдвиг в гексагональной решетке магния при низких температурах осуществляется лишь по плоскости базиса (основание шестигранной призмы). Нагрев до 200–300 °C приводит к появлению дополнительных плоскостей скольжения и, соответственно, повышению пластичности. Малая диффузионная подвижность атомов в магниевых сплавах приводит к замедлению фазовых превращений в них. Поэтому термическая обработка (диффузионный или рекристаллизационный отжиг, закалка, старение) требует больших выдержек (до 24 ч).

В то же время магниевые сплавы характеризуются высокой удельной прочностью, хорошо поглощают вибрации, не взаимодействуют с ураном. Они хорошо обрабатываются резанием и удовлетворительно свариваются аргонодуговой и контактной

сваркой. Основными легирующими элементами в магниевых сплавах являются Мп, Al и Zn.

39 Медь и медные сплавы медь – цветной металл, обладающий высокой тепло- и электропроводностью. Медь хорошо обрабатывается давлением в холодном и горячем состоянии. Чистая медь согласно ГОСТ 854-66 859-66  имеет 11 марок (М00б, М0б, М1б, М1, М2, М3 и т.д.) в зависимости от содержания вредных примесей в меди. Суммарное количество примесей (висмут, сурьма, мышьяк, железо, никель, свинец, олово, сера, кислород, фосфор) в лучшей марке М00б – 0,01% (то есть меди в ней 99,99%), а в марке М3 примесей 0,5%.

на основе меди производят различные сплавы, которые можно подразделить на две большие группы:

1. Латуни - сплавы на основе меди и цинка, при этом сплавы могут быть, как двойными так и многокомпонетными. Латунь ЛЦ40С - sв=215МПа, d=12%, 70НВ.

Латуни марок Л06 и Л90 рассчитаны на применение в случаях когда требуется высокая пластичность.

Латуни марок Л62, Л60,Л59, представляет собой сплавы с большим содержанием цинка. Данные сплавы обладают более высокой прочностью и лучше обрабатываются резанием, при этом они обходятся  дешевле. Недостатком является ухудшенное сопротивление коррозии.

2. Бронзы - сплавы меди с различными элементами, кроме цинка. Бронза БрО3Ц12С5 - sв=200МПа, d=5%.

Оловянные бронзы представляют собой сплавы меди обладающие хорошими литейными свойствами.

Оловянные бронзы применяются для литья деталей сложной формы. Недостатком данного сплава является  большая их микропористость. Данные сплавы наиболее часто применяют для изготовления антифрикционных деталей.

40.Виды термическй обработки цветных сплавов Под термической обработкой цветного металла понимается нагрев до определенной температуры, после чего следует охлаждение с определенной скоростью. Общая эффективность термической обработки цветного металла зависит от его предшествующей обработки, от температуры и скорости нагрева, продолжительности выдержки при этой температуре и скорости охлаждения

Процессы термической обработки цветных металлов можно разделить на две основные группы: термическая обработка, целью которой является получение структуры, максимально приближающейся к равновесному состоянию, и термическая обработка, целью которой, наоборот, является достижение неравновесного состояния. В некоторых случаях обе упомянутые группы процессов взаимно перекрываются

К первой группе относятся рекристаллизационный отжиг деформированного материала, далее отжиг для снятия внутренних напряжений и, наконец, гомогенизационный отжиг отливок. Ко второй группе, которая считается иногда термической обработкой в узком смысле слова, относится термическая обработка с получением неравновесного состояния, т. е. так называемое дисперсионное отверждение

Мягкий или рекристаллизационный отжиг

Мягкий отжиг это термическая обработка заготовок, подвергшихся холодной обработке давлением. Он производится путем нагрева изделия до определенной температуры, выдержки при этой температуре в течение определенного времени и, как правило, медленного последующего охлаждения. Уровень температуры, продолжительность выдержки так же, как и скорости нагрева и охлаждения, зависят как от способа предшествующей обработки, так и от требуемых свойств изделия. Следовательно, процесс этого отжига характеризуется степенью предшествующего обжатия, температурой и продолжительностью отжига и требуемой структурой изделия.

Термическая обработка цветных металлов

Виды термической обработки цветных металлов

Под термической обработкой цветного металла понимается нагрев до определенной температуры, после чего следует охлаждение с определенной скоростью. Общая эффективность термической обработки цветного металла зависит от его предшествующей обработки, от температуры и скорости нагрева, продолжительности выдержки при этой температуре и скорости охлаждения

Процессы термической обработки цветных металлов можно разделить на две основные группы: термическая обработка, целью которой является получение структуры, максимально приближающейся к равновесному состоянию, и термическая обработка, целью которой, наоборот, является достижение неравновесного состояния. В некоторых случаях обе упомянутые группы процессов взаимно перекрываются

К первой группе относятся рекристаллизационный отжиг деформированного материала, далее отжиг для снятия внутренних напряжений и, наконец, гомогенизационный отжиг отливок. Ко второй группе, которая считается иногда термической обработкой в узком смысле слова, относится термическая обработка с получением неравновесного состояния, т. е. так называемое дисперсионное отверждение

Мягкий или рекристаллизационный отжиг

Мягкий отжиг это термическая обработка заготовок, подвергшихся холодной обработке давлением. Он производится путем нагрева изделия до определенной температуры, выдержки при этой температуре в течение определенного времени и, как правило, медленного последующего охлаждения. Уровень температуры, продолжительность выдержки так же, как и скорости нагрева и охлаждения, зависят как от способа предшествующей обработки, так и от требуемых свойств изделия. Следовательно, процесс этого отжига характеризуется степенью предшествующего обжатия, температурой и продолжительностью отжига и требуемой структурой изделия. Кратко можно пояснить сказанное следующими примерами

Металл, получивший наклеп в результате обработки давлением, претерпевает во время нагрева несколько взаимно перекрывающихся изменений. Сначала происходит так называемое «восстановление», характеризующееся снятием внутренних напряжений, т. е. устранением нарушений кристаллической решетки, вызванных в материале обработкой давлением. В этой области механические свойства изменяются очень мало, хотя на некоторых физических свойствах уже наблюдаются изменения. При дальнейшем нагреве начинают образовываться зародыши новообразующей структуры, и происходит рост этих зародышей. В совокупности эти два процесса называют рекристаллизацией. Механические и физические свойства, приобретенные материалом в результате обработки давлением, утрачиваются им при рекристаллизации, и материал приобретает свойства, которые он имел перед наклепом. Затем следует стадия роста зерна, при которой кристаллы сливаются; при этом некоторые кристаллы растут за счет соседних кристаллов, и кристаллическая структура укрупняется

Процесс изменения механических свойств меди, не содержащей кислорода при наклепе и рекристаллизационном отжиге поясняется на нижележащих графиках

Зависимость механических свойств при наклепе от степени обжатия Зависимость механических свойств при рекристаллизационном отжиге от температуры Кривые твердости в зависимости от предшествующей степени обжатия и температуры, а также рост зерна в зависимости от температуры после рекристаллизации

Отжиг для снятия внутренних напряжений

Такой отжиг называется стабилизацией, а применительно к деформированным заготовкам — отпуском. Отжиг состоит в нагреве до невысокой температуры и кратковременной выдержке при этой температуре до полного прогрева изделия, после чего следует медленное охлаждение. Для заготовок, обработанных давлением, это — температура из области восстановления, т. е. ниже температуры рекристаллизации. Этим отжигом устраняются внутренние напряжения, вызванные, например, в отливках неравномерным остыванием и термической обработкой, а в поковках — обработкой давлением на холоде, термической обработкой или обработкой резанием при больших сечениях стружки. Прежняя кристаллизация при этом нагреве сохраняется. Механические свойства также существенно не изменяются, в том числе и после длительного хранения

У изделий, особенно сложной конфигурации, этим процессом обеспечивается Гомогенизационный отжиг

Гомогенизационный отжиг — это термическая обработка, состоящая из нагрева до высокой температуры и выдержки при этой температуре в течение определенного времени, пока не будут достигнуты равномерный состав и равномерная структура.

Дисперсионное отверждение

Для дисперсионного отверждения сплава обязательным условием является то, чтобы в основных кристаллах находилась частично растворимая фаза, растворимость которой уменьшается с понижением температур

41классификация полимеров и пласмасс, физико механические, химические технологические свойства пласмасс,преимущества недостатки пласмасс

лассификация полимеров

В зависимости от молекулярной массы (ММ), полимеры делятся на:

— мономеры (с небольшой ММ); — олигомеры (с ММ менее 540); — полимеры (высокомолекулярные, с ММ от пяти тысяч до пятисот тысяч); — сверхвысокомолекулярные полимеры с ММ более полумиллиона.

По степени разветвленности молекул:

— линейные (молекула состоит из цепочки мономеров), к ним относится натуральный каучук, эластомеры и другие полимеры высокой эластичности; — разветвленные (цепочка из звеньев имеет боковые ответвления), например, амилопектин; — сетчатые или сшитые (между соседними макромолекулами существуют поперечные связи), нерастворимые и неэластичные полимеры, например, эпоксидные смолы в стадии отверждения.

По составу мономеров:

— гомополимеры, состоящие из одного вида звеньев, например, ПВХ, целлюлоза; — сополимеры, состоящие из звеньев разного строения (многие полимеры с улучшенными свойствами).

В зависимости от того, как полимеры реагирует на нагревание, их разделяют на:

— термопласты, после охлаждения возвращающиеся в исходное состояние без потери физических свойств (этими качествами обладают линейные и разветвленные полимеры); — реактопласты, после нагревания частично и необратимо разрушаются и не восстанавливают исходных свойств (сетчатые пространственные полимеры).

По структуре полимеры разделяют на:

— кристаллические, содержащие более 2/3 кристаллических структур (полиэтилен низкого давления, полипропилен, тефлон); — аморфные, содержащие не более нескольких процентов кристаллических структур (акриловое стекло, полистирол и все сетчатые полимеры);  — аморфно-кристаллические, содержащие от 25 до 70% кристаллических структур (полиэтилен высокого давления).

По происхождению:

— природные (белки, коллоидная сера, натуральный каучук, целлюлоза, крахмал); — синтетические (фенолформальдегидные смолы, полистирол).

По химическому составу:

— органические; — неорганические, не содержащие органических звеньев ни в главной цепи, ни в ответвлениях макромолекулы (пластическая сера, кристаллы кварца); — элементоорганические, макромолекулы которых состоят из углеводородных групп и неорганических звеньев (кремний-, боро-, фосфорорганические полимеры и др.).

В основу классификации пластмасс положены их физико-механические свойства, структура и отношение к нагреванию. По физико-механическим свойствам все пластмассы разделяют на пластики и эластики.

Пластики бывают жесткие, полужесткие и мягкие. Жесткие пластики — твердые упругие материалы аморфной структуры с высоким модулем упругости (свыше 1000 МПа) и малым удлинением при разрыве, сохраняющие свою форму при внешних напряжениях в условиях нормальной или повышенной температуры. Полужесткие пластики — твердые упругие материалы кристаллической структуры со средним модулем упругости (выше 400 МПа), высоким относительным и остаточным удлинением при разрыве, причем остаточное удлинение обратимо и полностью исчезает при температуре плавления кристаллов. Мягкие пластики — мягкие и эластичные материалы с низким модулем упругости (не выше 20 МПа), высоким относительным удлинением и малым остаточным удлинением, причем обратимая деформация исчезает при нормальной температуре с замедленной скоростью.

Эластики — мягкие и эластичные материалы с низким модулем упругости (ниже 20 МПа), поддающиеся значительным деформациям при растяжении, причем вся деформация или большая ее часть исчезает при нормальной температуре с большой скоростью (практически мгновенно).

По строению полимерной цепи различают пластмассы карбоцепные (цепь состоит только из атомов углерода) и гетероцепные (в состав цепи кроме углерода входят кислород, азот и другие элементы).

По структуре пластмассы делят на гомогенные (однородные) и гетерогенные (неоднородные). Структура пластмасс зависит от введения в нее наряду с полимером других компонентов. Последнее позволяет делить пластмассы на ненаполненные, газонаполненные, наполненные и составные. Ненаполненные пластмассы состоят из полимера, иногда из красителя, пластификатора и стабилизатора. В газонаполненные кроме указанных материалов входят также воздух или другой газ путем использования добавок газообразующих или воздухововлекающих веществ. В большинстве случаев для изготовления пластмассовых строительных материалов и изделий используют наполненные пластмассы, состоящие из полимера и наполнителя.

Пластмассы обладают рядом очень ценных физико-механических свойств. Плотность пластмасс составляет 10...2200 кг/м3.

Пластмассы обладают высокими механическими показателями. Так, пластмассы с порошкообразными и волокнистыми наполнителями имеют предел прочности при сжатии до 120... 200 МПа, а предел прочности при изгибе — до 200 МПа. Прочность пластмасс на растяжение с листообразными наполнителями достигает 150 МПа, а стекловолокнистого анизотропного материала (СВАМ) — 480...950 МПа.

Пластмассы не подвергаются коррозии, они стойки против действия растворов слабых кислот и щелочей, а некоторые пластмассы, например из полиэтилена, полиизобутилена, полистирола, поливинилхлорида, стойки к воздействию даже концентрированных растворов кислот, солей и щелочей; их используют при строительстве предприятий химической промышленности, канализационных сетей, для изоляции емкостей.

Пластмассы, как правило, являются плохими проводниками тепла, их теплопроводность, = 0,23...0,8 Вт/(м-°С), а у пено- и поропластов К = 0,06...0,028 Вт/(м-°С), в связи с этим пластмассы широко используют в качестве теплоизоляционных материалов, их пористость может достигать 95...98%.

Пластмассы хорошо окрашиваются в любые цвета и долго сохраняют цвет.

Водопоглощение пластмасс очень низкое — у плотных материалов оно не превышает 1%

Оценка технологических свойств пластических масс проходит по ряду показателей:

   текучесть;

-       влажность;

-       дисперсность;

-       усадка;

-       таблетируемость и др.

Технологичность характеризует способность материала перерабатываться существующими способами без применения специальных приемов по обычно существующей технологии. В частности от величины текучести материала выбирается метод переработки, размеры литниковых каналов. В зависимости от содержания  влаги в материале может применяться или отсутствовать такая технологическая операция как сушка. Соответствующим образом выбираются технологические параметры переработки.

Преимущества пластмасс по сравнению с обычными материалами чрезвычайно велики. Малый вес, гладкая и легкомоющаяся поверхность, простота обработки, абсолютная устойчивость к коррозии, а часто и к толчкам и ударам, разнообразная окраска объясняют их широкую популярность. Но пластмассы обладают и существенными недостатками, в первую очередь низкой жаропрочностью. Многие из них размягчаются уже при 80, а при соприкосновении с кипящей водой теряют форму.  [2]

Недостатки пластмасс как конструктивных материалов: сравнительно низкая теплостойкость, склонность к старению и вла-гопоглощению, высокое тепловое расширение ( в 2 5 - 10 раз выше стали), повышенные ползучесть и горючесть.  [1]

деградируют под действием ультрафиолетового излучения и не выдерживают высоких температур, которые могут развиться при отсутствии теплоносителя в коллекторе

42 Термопласты их состав и свойства Термопла́сты — полимерные материалы, способные обратимо переходить при нагревании в высокоэластичное либо вязкотекучее состояние.

При обычной температуре термопласты находятся в твёрдом состоянии. При повышении температуры они переходят в высокоэластичное и далее — в вязкотекучее состояние, что обеспечивает возможность формования их различными методами. Эти переходы обратимы и могут повторяться многократно, что позволяет, в частности, производить переработку бытовых и производственных отходов из термопластов в новые изделия.В их состав входят синтетические вещества.

43 Реактопласты их состав и строение Реактопласты (термореактивные пластмассы) — пластмассы, переработка которых в изделия сопровождается необратимой химической реакцией, приводящей к образованию неплавкого и нерастворимого материала.

Наиболее распространены реактопласты на основе фенолформальдегидных, полиэфирных, эпоксидных и карбамидных смол (например, углеволокно). Содержат обычно большие количества наполнителя — стекловолокна, сажи, мела и др. Термореактивные материалы, как правило, твёрже, чем термопластичные материалы

Термореактивныеполимеры (см. ПОЛИМЕРЫ) состоят из макромолекул, соединенных поперечными ковалентными, то естьхимическими связями. Такая сетчатая химическая структура необратима. Нагревание сетчатых полимеровприводит не к расплавлению, а к разрушению пространственной сетки, сопровождающемуся деструкцией. При нагревании в реактопластах происходит необратимое изменение свойств в результате сшиваниямолекулярных цепей поперечными химическими связями. Материал при этом отверждается и переходит израсплавленного состояния в твердое. Температура отверждения может быть как высокой (80—160оС) пригорячем отверждении, так и низкой — при холодном отверждении. Отверждение происходит за счетобразования поперечных химических связей, которые могут образовываться как в результате тольковзаимодействия функциональных групп самого материала, так и при помощи отвердителей, вводимых в него. Благодаря сетчатой молекулярной структуре реактопласты имеют свойства, которые не наблюдаются утермопластов (см. ТЕРМОПЛАСТЫ). Густосетчатые термореактивные полимеры, к которым относятсяполиэпоксиды, характеризуются повышенными значениями жесткости, модуля упругости, теплостойкости; редкосетчатые реактопласты, основными представителями которых являются резины (см. РЕЗИНА (материал)), обладают высокой деформативностью, стойкостью к истиранию, повышенным коэффициентомтрения. Содержат обычно большие количестванаполнителя — стекловолокна, сажи, мела и др. К реактопластам относятся также крезолоформальдегидныесмолы, анилиноформальдегидные смолы, глифталевые смолы, петафталевые смолы и т. д.

44Неорганическое стекло и ситаллы. неорганическое стекло́ или стекло, отличающееся составом стеклообразующих веществ: оксидов, фторидов и др. — твёрдый, хрупкий,аморфный материал, разновидности которого формируются при определённых условиях в процессе переохлаждениярасплава и при определённых условиях способное к кристаллизации 

Ситалл (стеклокристаллический материал) — неорганический материал, получаемый направленной кристаллизацией различных стекол при их термической обработке.

В последние десятилетия (начиная с 1950 годов) создан и используется новый класс материалов — ситаллы (стеклокристаллические материалы), которые отличаются высокими физико-химическими, физико-механическими характеристиками. В зависимости от фаз кристаллизации получаемые материалы ситаллы делятся на: однофазные и многофазные (несколько фаз).

Подбором состава стекла, содержащего в большинстве случаев добавки, ускоряющие объёмную кристаллизацию (катализаторы, нуклеаторы), можно рассчитать соответствующие кристаллические и стекловидную фазы. Кристаллы заранее рассчитанных фаз возникают и растут равномерно по всему объёму в результате термической обработки. Технология производства изделий из ситаллов сходна и мало отличается от производства изделий из стекла. В отдельных случаях изделия можно формовать методами керамической технологии (см. Керамика). Часто для зарождения кристаллов в состав стекла вводят фоточувствительные добавки, активаторы люминесценции и др. Для производства отдельных видов ситаллов используют шлаки (см. Шлакоситаллы).

Стеклокристаллические материалы ситаллы отличаются:

  • Мелкодисперсной кристаллической структурой с величиной кристаллов до 2000 нм, равномерно распределеных в стеклообразной матрице.

  • Количество кристаллических фаз в ситаллах может насчитываться порядка 20-95% (по всему объему).

  • В зависимости от состав стекла, типа катализатора кристаллизации и режима термической обработки, получают ситаллы с различными кристаллическими фазами и соответственно с различными заданными {{nobr|1=свойствами.

  • Ситаллы обладают высокой прочностью, твердостью, изно-состойкостью, малым термическим расширением, химической и термической устойчивостью, газо- и влагонепроницаемостью

45 Строение древисины

Части растущего дерева. Древесные растения, используемые для получения древесных материалов, делятся по породам на две группы — хвойные и лиственные. Деревья хвойных пород имеют в нашей стране наибольшее распространение, они занимают около 75% лесных площадей. Отличительная черта деревьев хвойных пород — смолистость, игольчатая и чешуйчатая форма листьев (хвои), не опадающих (кроме лиственницы) на зиму. Деревья лиственных пород имеются пластинчатые листья различных очертаний, опадающие на зиму. Лиственные породы делятся на две подгруппы в зависимости от твердости древесины: твердые лиственные породы (дуб, бук, ясень и др.), мягкие лиственные породы (липа, осина, ольха и др.).

В растущем дереве выделяют три основные его части — крону, ствол, корни (Рис... Каждая часть имеет определенное назначение в жизни дерева и различное промышленное применение. Крона — это совокупность ветвей, отходящих от ствола. В листьях и хвое под действием солнечного света происходит фотосинтез:

Зеленой частью дерева поглощается углекислый газ из атмосферы и выделяется в атмосферу кислород и влага. Корни дерева всасывают из почвы воду с растворенными минеральными питательными веществами, хранят запас питательных веществ, поддерживают дерево в вертикальном положении. Ствол дерева служит для передачи из корней в крону влаги и питательных веществ, а из кроны в ствол органических веществ, выработанных листьями, а также для хранения запаса питательных веществ.

Главные разрезы ствола. Макроскопическое строение древесины. Древесина имеет слоисто-волокнистое строение, рассмотреть которое можно на трех главных разрезах ствола (Рис. а); поперечном — в плоскости, перпендикулярной продольной оси ствола; радиальном — в плоскости, проходящей через ось ствола; тангенталъном — в плоскости, не проходящей через ось, но параллельной ей.

На поперечном разрезе ствола можно различать все его элементы (Рис.). Сердцевина на поперечном разрезе видна в виде пятна диаметром 2-5 мм. Это слой древесины, выросший в первый год жизни. Вокруг сердцевины видны кольца круглой или овальной формы — годичные кольца, т.е. участки древесины, которые ежегодно нарастали на сердцевину. От сердцевины по радиусам расходятся отдельные полосы — это сердцевинные лучи, которые в растущем дереве выполняют функцию передачи питательных веществ от наружной части ствола вглубь и их хранения. Снаружи ствол закрыт корой.

В зоне коры взрослого дерева можно различить три слоя: прилегающий к древесине камбиальный, лубяной и наружный

46.Свойства древесины Для древесины основными и наиболее важными являются следующие свойства:

  1. Механические: прочность, твёрдость, деформативность, удельная вязкость, эксплуатационные характеристики, технологические характеристики, износостойкость, способность удерживать крепления, упругость;

  2. Физические: внешний вид (текстура, блеск, окраска), влажность (усушка, коробление, водопоглощение, гигроскопичность, плотность), тепловые (теплопроводность), звуковые (акустическое сопротивление, звукопроводность), электрические (диэлектрические свойства, электропроводность, электрическая прочность);

  3. Химические свойства.

Древесина является анизотропным материалом, то есть материалом с неодинаковыми свойствами по направлениям относительно волокон. (Так, например, усушка вдоль волокон меньше, чем поперёк волокон, а усушка в радиальном направлении меньше, чем в тангентальном. Различны также, в зависимости от направления волокон, влагопроводность, паропроницаемость, звукопроводность и некоторые другие характеристики).

47.Пороки древесины Поро́ки древеси́ны — это особенности и недостатки древесины, как всего ствола дерева, так и отдельных его участков, ухудшающие её свойства и ограничивающие возможности её использования.

Естественные пороки (в отличие от дефектов обработки) образуются в процессе роста дерева, из-за неблагоприятных климатических условий и места произрастания, случайных повреждений, естественного старения, деятельности микроорганизмов, насекомых-вредителей и птиц. Влияние порока на качество древесины определяется его видом, размерами, расположением и назначением пиломатериала. Поэтому пороки, нежелательные в одних видах лесоматериалов, могут не приниматься во внимание в других и быть желательными в третьих. Только пороки, значительно снижающие прочность древесины, как, например, гнили, считаются безусловными. Некоторые пороки древесины используются в декоративных целях, в изготовлении мебели и других изделий.

Дефе́ктами обрабо́тки называют пороки, возникающие при механическом воздействии на дерево или древесину во время заготовки, транспортировки, пиления и т. д. Это самая многочисленная группа пороков.

Самой многочисленной группой естественных пороков древесины, кроме сучков, представляющих собой видоизменения одного порока, являются пороки строения древесины.

48.Виды древесных полуфабрикатов и пиломатериалов Из древесных материалов наибольшее применение в производстве мебели имеют доски и бруски, шпон, клееная фанера, гнуток-лееные детали, плиты (столярные, стружечные, волокнистые), щиты мебельные, древесные слоистые пластики, детали, спрессованные из измельченной древесины, черновые заготовки и др.

Доски и бруски получают путем распиловки круглого леса вдоль волокон. Пиломатериал, у которого отношение ширины к толщине больше двух, относится к доскам, меньше двух — к брускам. При продольной распиловке стволов деревьев на лесопильных рамах получают различные пиломатериалы (рис. 11): брусья, бруски, доски, пластины, четвертины и горбыли.

Б рус — пиломатериал толщиной и шириной более 100 мм. Если брус опилен с двух сторон, то его называют двухкантным, а если с четырех сторон, то четырехкантным.

Бруски — пиломатериал толщиной менее 100 мм и шириной менее двойной толщины.

Доски — пиломатериал толщиной до 100 мм и шириной более двойной толщины.

Пластины получают при продольном распиливании бревна пополам, а четвертины — на четыре части.

Горбылем, или обаполом, называют выпиленную боковую часть бревна

Доски и бруски имеют толщину до 100 мм и делятся на тонкие (толщиной от 13 до 35 мм) и толстые (более 35 мм).

средние — от до 1,9 и длинные — от 2,5 до 6,5 м. Ширина их от 50 мм и более.

По характеру обработки различают доски и бруски обрезные и необрезные. Обрезными называются доски и бруски, у которых отпилены все четыре стороны; необрезными — с неотпиленными боковыми кромками. Доски и бруски могут быть строгаными или шпунтованными Из лиственных пород с красивой текстурой — ореха, клена, чинары, тополя, карагача, красного дерева, лимонного дерева, карельской березы и других, а также тисса и лиственницы, шпон получают методом строгания на специальных строгальных станках. Такой шпон называется строганым

К полуфабрикатам из древесины относятся: клееная и строганая фанера, столярная плита из реек, древесно-стружечная и древесно-волокнис- тая плита.

Клееную фанеру получают от лущеного шпона путем срезания ленты от вращения чурака по всей его длине (подобно развертке рулона бумаги). Кле­еная фанера, или, как ее часто называют, фанера- переклейка, изготовляется из нечетного числа слоев лущеного шпона, причем волокна смежных слоев размещаются перпендикулярно друг другу (листы фанеры должны состоять не менее чем из трех шпонов).

Строганый шпон изготовляют из твердых и цен­ных пород—дуба, ясеня, ореха, клена, ильма, ка­штана, груши, яблони, черешни, чинары, карагача и др. Строганый шпон толщиной 0,5—1,5 мм полу­чают на фанерострогальных станах путем строга­ния вдоль дерева тонких листов.

Фанера бывает радиальной, полурадиальной и тангенциальной строжки. В первом и втором случаях кряж распиливают на четвертины, кото­рые затем строгают по плоскостям, направление которых совпадает с радиусом кряжа. В третьем случае кряж распиливают вдоль на две равные части, которые строгают параллельно линии рас­пила.

Столярная плита, как и клееная фанера, пред­ставляет собой полуфабрикат. Столярная плита собирается и склеивается из отдельных реек (серединок) и оклеивается с двух сторон шпоном 

Древесно-стружечная плита изготовляется ме­тодом горячего прессования древесной стружки со связующими веществами и термореактивных смол и выпускается следующих размеров в мм:

Древесно-волокнистая плита изготовляется из древесных или иных растительных волокон, пропи­танных синтетическими водоустойчивыми смолами или маслами с последующей термической обработ­кой, и применяется в качестве отделочного и зву­коизоляционного материала в конструкциях и из­делиях, защищенных от увлажнения. Изготовляют­ся плиты изоляционные, полутвердые отделочные и твердые 

49 Исследование древесных материалов на влажность Информация о влажности древесины очень важна для правильного построения технологических процессов деревообработки. Слишком высокая влажность древесных материалов чревата опасностью биологического поражения древесины, а также последующей усушки деревянных деталей и их коробления при эксплуатации в условиях повышенных температур и низкой влажности воздуха. Слишком сухая древесина становится довольно хрупкой, трудно деформируется и гнется, плохо поддается обработке резанием

Весовой метод является самым точным из перечисленных. Он предназначен для оценки влажности древесины в лабораторных условиях и требует пять-восемь часов для получения результата. От тестируемого материала (доски) на расстоянии 300-500 мм от торца отпиливают пробу толщиной 10-12 мм (вдоль волокон древесины), которую тщательно очищают от заусенцев и тут же взвешивают на лабораторных весах с точностью до 0,001 г. Затем пробу помещают в электрический сушильный шкаф и сушат при температуре 100-105°С. В процессе сушки пробу периодически вынимают из сушильного шкафа и взвешивают. Первое взвешивание выполняют через пять часов после закладки пробы в шкаф, остальные - через каждые один-два часа. Древесина достигает абсолютно сухого состояния, когда масса пробы перестает изменяться. Разница в массе влажного и сухого образца (пробы), отнесенная к массе абсолютно сухого образца, показывает влажность древесины в момент первого взвешивания.

Ускоренный сушильно-весовой метод предусматривает сушку образцов при температуре 120±2°С в сушильных шкафах с принудительной циркуляцией. Продолжительность сушки в этом случае составляет 2-2,5 ч. Конечную массу образцов определяют после их охлаждения в комнатных условиях в течение 2-5 мин.

Известен также экспресс-метод определения влажности древесины весовым способом. С пиломатериала или заготовки острой стамеской снимают тонкую стружку, которую тотчас же взвешивают с высокой точностью и помещают в сушильный шкаф. После полного высушивания стружки в течение нескольких минут ее охлаждают и снова взвешивают. При высокой точности взвешивания достигается высокая точность определения влажности. В одном агрегате размещаются точные аналитические весы, нагреватель и вентилятор, а также электронный узел для фиксации результатов измерений и расчета влажности. Для получения максимально объективного результата пробу следует сначала расколоть, а потом снять стружку с поверхности внутренней части образца.

50.Определение усушки,разбухания плотности и твердости древесины

Усушка древесины понимается как сокращение размеров линейного характера и объемных значений на протяжении времени. Ее можно наблюдать в тот момент, когда влага покидает этот материал. Явление подобного плана характерно для всех пород деревьев, причем некоторые из них подвергаются большему влиянию, чем другие.

Усушка сопровождает любой из процессов просыхания натуральных пород. Из их волокон выходит связанная и адсорбированная вода.

Усушка и коробление граней: I — грани древесины, не подвергавшиеся сушке; II — грани высушенной древесины; а, б, в, г — схемы усушки граней древесины в зависимости от их места в стволе.

Начальный этап усушки характеризуется освобождением основания от свободной воды, происходит незначительное удаление связанной жидкости. Процесс происходит небольшими темпами. В момент испарения микрокапиллярной воды процесс усыхания заметно ускоряется.

При увлажнении древесины в результате увеличения содержания связанной влаги микрофибриллы в клеточных оболочках раздвигаются. Это вызывает увеличение размеров (объема) анатомических элементов и древесины в целом — разбухание. Мерой разбухания является влажностная деформация, отнесенная к размеру (объему) образца в абсолютно сухом состоянии: Разбухание представляет собой явление, обратное усушке, и практически подчиняется одним и тем же количественным закономерностям

Плотность древесины (плотность дерева)— это отношение массы древесины к ее объему. (Плотность различных пород дерева в таблице.) Выражается плотность в кг/м3 . Плотность древесины зависит от ее влажности. Все показатели физико-механических свойств древесины определяются при влажности 12%. Между прочностью и плотностью существует тесная связь. Более тяжелая древесина, как правило, является более прочной. Плотность определяется массой древесного вещества в единице объема.

Твердость

  • Статистические (по Бринеллю, Роквеллу, Кнупу, Викерсу) представляют собой вдавливание сверхтвердого предмета в поверхность древесины. Этим предметом может служить алмазный конус или металлический шарик; их деформацией можно пренебречь;

  • В динамические методах (по Шору, Морину, Бауману, Шварцу, Граве) происходит создание в материале отпечатка шариком при ударной нагрузке;

  • В некоторых случаях твердость определяется по сопротивлению абразивному изнашиванию и шлифованию

Для того, чтобы определить твердость древесины применяют метод Бринелля. Его результатом является числовой показатель, в России и Европе он указывается на древесине и обозначает ее твердость. Суть самого метода состоит в следующем: в небольшой фрагмент исследуемого материала с силой 100 кг вдавливается небольшой стальной шарик диаметром 10 мм. Лунку, которая после этого остается, измеряют. Твердость дерева и показатель на шкале Бринелля тем выше, чем меньше след от шарика.

51.Изучение механических свойств древесины

Древесина вследствие волокнистого строения отличается высокой прочностью при растяжении и сжатии вдоль волокон и значительно меньшей — поперек волокон. Прочность зависит от влажности — с повышением влажности она уменьшается. На прочность древесины оказывает влияние лишь изменение количества гигроскопической влаги. При повышении влажности выше точки насыщения волокон прочность древесины практически не уменьшается

Прочность древесины характеризуется пределом прочности, т.е. напряжением, равным отношению наибольшей нагрузки, предшествовавшей разрушению образца, к первоначальной площади его сечения. Деформация древесины может быть различной не только в зависимости от величины действующих сил, но и от продолжительности их воздействия. Так, при кратковременном воздействии определенной силы деформация может быть упругой, а при длительном воздействии той же силы — остаточной и тем большей, чем длительнее воздействие

Во многих деревянных конструкциях древесина работает на сжатие, смятие, скалывание, изгиб и реже на растяжение как вдоль, так и поперек волокон. В связи с этим древесину испытывают, главным образом, на сжатие вдоль и поперек волокон, на скалывание и изгиб.

52 керамические материалы Керамические материалы получают из глиняных масс путем формования и последующего обжига. При этом часто имеет место промежуточная технологическая операция — сушка свежесформованных изделий, называемых «сырцом».

По характеру строения черепка различают керамические материалы пористые (неспекшиеся) и плотные (спекшиеся). Пористые поглощают более 5% воды (по массе), в среднем их водопоглощение составляет 8...20% по массе. Пористую структуру имеют кирпич, блоки, камни, черепица, дренажные трубы и др.; плотную — плитки для полов, канализационные трубы, санитарно-технические изделия

Кирпич   глиняный   обыкновенный   имеет   наибольшее   применение   в   сельском   строительстве. Кирпич глиняный пустотелый выпускается тех же размеров, что и обыкновенный, но имеет круглые, прямоугольные или щелевидные пустоты, расположенные вертикально (перпендикулярно постелям). Камни керамические выпускают только пустотелыми, с вертикальным (от 7 до 38 отверстий) и горизонтальным (3,7 и 11 отверстий) расположением пустот. Клинкерный кирпич — специальный кирпич из тугоплавких глин для дорожных покрытий размером 220x110x65 мм Лицевой кирпич и камень выпускают сплошными и пустотелыми. Размеры как у обычных кирпичей и керамических камней Плитка керамическая имеет много разновидностей по размерам, исходным материалам, отделке   поверхностей   и   назначению Кровельная черепица — старинный кровельный материал, красивый и долговечный. 

53. Маркировка и расшифровка конструкционных сталей

Сами марки стали, чугуна и цветных сплавов находятся разделом выше - более 1500 марок  здесь.

Расшифровка марок сталей не очень сложное дело, если знать какими буквами принято обозначать те или иные химические элементы, входящие в состав марки или сплава.

 

Например, буквой Х - обозначается хром, Н никель, К - кобальт, М - молибден, В - вольфрам, Т - титан, Д - медь, Г - марганец, С - кремний,

Ф - ванадий, Р - бор, А - азот, Б - ниобий, Е - селен, Ц - цирконий, Ю - алюминий, Ч - показывает о наличии редкоземельных металлов

 

Также существуют свои обозначения для разных типов сталей в зависимости от их состава и предназначения.

Буквенные обозначения применяются также для указания способа раскисления стали:

КП — кипящая сталь

ПС — полуспокойная сталь

СП — спокойная сталь

 

Конструкционные стали обыкновенного качества нелегированные обозначают буквами Ст. (например, Ст.3; Ст.3кп)

Цифра, стоящая после букв, условно обозначает процентное содержание углерода в стали (в десятых долях), индекс кп указывает на то, что сталь относится к кипящей, т.е. неполностью раскисленная в печи и содержащая незначительное количество закиси железа, что обусловливает продолжение кипения стали в изложнице. Отсутствие индекса означает, что сталь спокойная.

 

Конструкционные нелегированные качественные стали (например, Ст.10; Сталь 20; Ст.30; Ст.45), обозначают двузначным числом, указывающим на среднее содержание углерода в стали 0,10%; 0,20%; и т.д.

 

Конструкционная низколегированная 09Г2С расшифровывается как сталь, углерода в которой около 0,09% и содержание легирующих компонентов марганца, кремния и других, составляет в сумме менее 2,5%.

Стали 10ХСНД и 15ХСНД отличаются разницей углерода, в таких сталях среднее содержание каждого элемента содержится менее 1% процента, поэтому цифры за буквой не ставятся.

 

Конструкционные легированные стали, такие как 20Х; 30Х; 40Х обозначают буквами и цифрами, в данном случае марка показывает содержание углерода и основного легирующего элемента хрома. Цифры после каждой буквы обозначают примерное содержание соответствующего элемента, однако при содержании легирующего элемента менее 1,5% цифра после соответствующей буквы не ставится.

30ХГСА хромокремнемарганцевая сталь, обладает большой прочностью и повышенным сопротивлением к ударным нагрузкам. В состав марки входит углерод 0,30%, кроме углерода содержит марганец, кремний и хром, примерно в равных долях по 0,8-1,1%

Содержание серы и фосфора не должно превышать 0,03% для каждого из этих элементов, поэтому в конце таких марок ставится буква А, что свидетельствует о дополнительных показателей качества марок, (например, 20ХН4ФА; 38ХН3МА). Также обозначаются и конструкционные рессорно-пружинные стали, такие как 60С2А, 65Г, где первые цифры показывают углерод в сотых долях процента. (0,60 и 0,65 соответственно).

 

Расшифровка сталей конструкционных подшипниковых, производится так, они обозначаются также как и легированные, маркировка начинается с буквы Ш (например, ШХ4; ШХ15; ШХ15СГ). Цифра 15 говорит о содержании легирующего хрома, примерная доля которого равна 1,5%, в стали ШХ4 0,4% соответственно. Существует множество других марок, подробнее о наличии в них элементов и примесей можно узнать в нашем марочнике, для этого достаточно воспользоваться поиском.

 

54 Маркировка и расшифровка инструментальных сталей Инструментальные нелегированные стали обозначаются буквой У. Далее следует цифра, выражающая среднее содержание углерода в стали: У10, У7, У8. Если сталь ещё и высококачественная, это также отмечают в маркировке: У8А, У10А, У12А. Если необходимо подчеркнуть увеличенное содержание марганца, применяют дополнительную букву Г. К примеру, существуют стали У8ГА и У10ГА.

Инструментальные легированные стали имеют такое же обозначение, как и конструкционные легированные. Например, марка ХВГ указывает на присутствие трёх главных легирующих элементов: хрома (Х), вольфрама (В) и марганца (Г). Содержание углерода здесь примерно 1%, а потому цифра в начале марки не пишется. Другой вид стали 9ХВГ имеет пониженное содержание углерода в сравнении с ХВГ: здесь углерода 0,9%

55.Маркировка и расшифровка чугунов Маркировка серого чугуна, как и его расшифровка, достаточна проста, обозначается двумя буквами СЧ, после этих букв ставятся цифры, которые обозначают наименьшее временное сопротивление серого, в кг/мм.2

Маркировка и обозначение высокопрочного чугуна, расшифровать так же достаточно просто.

Сначала идут две буквы, ВЧ, после этих букв так же следуют две цифры, которые так же обозначают наименьшее сопротивление (временное) в кгс/мм.2 

Ковкий чугун имеет аналогичную маркировку КЧ, только после букв следует уже не две цифры, а две группы цифр, к примеру: КЧ 37-12.

Первые две цифры, которые идут после букв обозначают наименьшее сопротивление (временное) в кгс/мм.2 а последняя группа цифр обозначает относительное удлинение в процентах, при растяжениях.

Легированный чугун имеет маркировку, в которой вначале стоит буква Ч, а затем буквы и цифры.

Буква Ч в маркировке легированного чугуна обозначается, что это, конечно же, чугун, а буквы и цифры, которые следуют далее, обозначают, какой именно легирующий элемент находится в металле и в каких количествах.

Например, есть такая маркировка, как ЧГ6С3, она обозначает, что в данном металле содержится 6 % марганца, а так же 3 % кремния.

Серые, ковкие и высокопрочные

Что касается высокопрочных, серых и ковких чугунов, то они, как правило, классифицируются непосредственно по маркам, которые имеют между собой различие уровня механических, гарантируемых свойств.

Серые обозначаются по ГОСТу 1412-85 следующим образом: СЧ-35, СЧ-10, СЧ-20, СЧ-15.

Высокопрочные в отличии от серых чугунов подразделяются на несколько основных марок, если быть более точным, то таких марок насчитывается восемь.

Обозначается высокопрочный чугун следующим образом: ВЧ-40, ВЧ-35, ВЧ-45, ВЧ-50 и т. д.

Ковкие  разделяются на 11 марок, обозначаются они следующим образом: КЧ 30-6, КЧ 35-Ю, КЧ 33-8, КЧ 80-1,5 и т. д.

Маркировка серого чугуна, как и его расшифровка, достаточна проста, обозначается двумя буквами СЧ, после этих букв ставятся цифры, которые обозначают наименьшее временное сопротивление серого, в кг/мм.2

Маркировка и обозначение высокопрочного чугуна, расшифровать так же достаточно просто.

Сначала идут две буквы, ВЧ, после этих букв так же следуют две цифры, которые так же обозначают наименьшее сопротивление (временное) в кгс/мм.2 

Ковкий чугун имеет аналогичную маркировку КЧ, только после букв следует уже не две цифры, а две группы цифр, к примеру: КЧ 37-12.

Первые две цифры, которые идут после букв обозначают наименьшее сопротивление (временное) в кгс/мм.2 а последняя группа цифр обозначает относительное удлинение в процентах, при растяжениях.

Легированный чугун имеет маркировку, в которой вначале стоит буква Ч, а затем буквы и цифры.

Буква Ч в маркировке легированного чугуна обозначается, что это, конечно же, чугун, а буквы и цифры, которые следуют далее, обозначают, какой именно легирующий элемент находится в металле и в каких количествах.

Например, есть такая маркировка, как ЧГ6С3, она обозначает, что в данном металле содержится 6 % марганца, а так же 3 % кремния.

Условные обозначения некоторых специальных чугунов

ЖЧХ-Жаростойкий, хромовый (коррозионностойкий)

АЧС- Серый, антифрикционный 

ЧН2Х-Износостойкий никелевый (коррозионностойкий)

ЖЧС5-Кремнистый жаропрочные

56 Маркировка и расшифровка металлокерамических инструментальных материалов  соответствии с ГОСТ 3882–74 в РФ выпускают три группы твердых сплавов: вольфрамовая (однокарбидная), титановольфрамовая (двухкарбидная), и титанотанталовольфрамовая (трехкарбидная). Их марки, состав и физико-механические свойства приведены в табл. 6.15.

Сплавы вольфрамовой группы (WC—Со) имеют наибольшую прочность, но более низкую твердость, чем сплавы других групп. Они теплостойки до 800 °С. Их применяют в режущем инструменте для обработки чугунов, сталей, цветных сплавов и неметаллических материалов. Повышенная износостойкость и сопротивляемость ударам сплавов группы ВК определяет их применение в горном инструменте и для изготовления штампов, пуасонов, матриц, фильер и т. д.

Таблица 6.15

Сплавы второй группы (WC—TiC—Co) имеют более высокую теплостойкость (до 900–1000 °С) и твердость. Это связано с тем, что карбид вольфрама частично растворяется в карбиде титана при температуре спекания с образованием твердого раствора (Ti, W)С, имеющего более высокую твердость, чем WC. Структура карбидной фазы зависит от соотношения WC и TiC в шихте. В сплаве Т30К4 образуется одна карбидная фаза — твердый раствор (Ti, W)С, который придает сплаву максимальную твердость (HRA 92), но пониженную прочность. В остальных сплавах этой группы количество WC превышает растворимость в TiС, поэтому карбиды вольфрама в них присутствуют в виде избыточных частиц. Эти сплавы применяют в основном для высокоскоростной обработки сталей и чугунов.

Третью группу образуют сплавы системы (WC—TiC—TaC—Co). В этих сплавах структура карбидной основы представляет собой твердый раствор (Ti, Та, W)С, и избыток WC. Сплавы этой группы отличатся от предыдущей большей прочностью, лучшей сопротивляемостью вибрациям и выкрашиванию. Они применяются в наиболее тяжелых условиях резания — при черновой обработке стальных поковок, отливок, а также труднообрабатываемых сталей и сплавов.