Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
записка.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.41 Mб
Скачать
  1. Расчёт диафрагмы второй ступени давления

П еред диафрагмой давление Р1 = 1,445 МПа, за ней Р2 = 1,216 МПа.

Внешний (опорный диаметр) D = 0,879 м,

d = 0,37 м, dк = 0,8081 м;

толщина диафрагмы t = 0,05 м;

число сопловых лопаток zд = 40 шт.

Момент сопротивления лопатки относительно оси изгиба Wл = 5,75 см3.

Материал лопаток сталь 20Х13;

σд.п = 220 МПа.

Материал диафрагмы - сталь 15Х1МФ;

σд.п. = 160 МПа, Е = 180·103 МПа.

Перепад давлений на диафрагме:

∆Р = Р1 – Р2 = 1,573-1,307=0,229 МПа.

Относительный диаметр диафрагменного уплотнения: d/D = 0,421.

Относительная толщина диафрагмы:

Рис. 9.Сварная диафрагма. t/D = 0,0569.

Из рис.56 [1] определяем Кσ = 488.

Максимальное напряжение изгиба, действующее в плоскости симметрии полотна полукольца диафрагмы:

Из рис. 56 [1] определяем К = 790.

Прогиб диафрагмы в области уплотнения вала:

Прогиб получился <1/3 от расстояния между диафрагмой и диском ступени равный 3,4 мм.

Угловой размер сектора, соответствующего одной сопловой лопатке:

Отношение .

Из рис.57 [1] определяем :

Отсюда изгибающий момент, действующий на лопатку:

Напряжение изгиба в лопатке:

Коэффициент запаса по длительной прочности диафрагмы:

>1,7.

Коэффициент запаса по длительной прочности лопатки:

>2,3.

Диафрагма по критериям прочности проходит.

  1. Определение критической частоты вращения ротора графоаналитическим методом.

  1. Вал вычерчивается в определенном масштабе по длине. Kl=10.

  2. После того как вал вычерчен, он разбивается на участки так, чтобы жесткость каждого была постоянна, а участки не особенно длинные.

  3. Определим силу тяжести участков: Gi=9,81·mi.

Таблица №7

№ п/п

Масса mi, кг

Сила тяжести Gi, Н

1

19,135

187,719

2

12,487

122,493

3

49,398

484,598

4

57,922

568,215

5

189,384

1857,859

6

408,755

4009,885

7

194,176

1904,864

8

137,274

1346,654

9

140,482

1378,128

10

133,644

1311,043

11

138,743

1361,073

12

177,501

1741,283

13

181,217

1777,738

14

211,479

2074,606

15

190,843

1872,175

16

221,371

2171,649

17

235,684

2312,060

18

243,088

2384,693

19

351,607

3449,263

20

364,807

3578,761

21

455,445

4467,918

22

524,409

5144,451

23

562,148

5514,674

24

622,769

6109,363

25

63,523

623,158

26

68,018

667,260

27

15,090

148,038

28

20,430

200,420

  1. Выбираем масштаб сил: KG = 200 Н/мм.

  2. Строим многоугольник сил. Выбираем полюсное расстояние: Н1 = 350 мм.

  3. Строим веревочный многоугольник под схемой вала. Этот многоугольник будет изображать эпюру изгибающих моментов в определенном масштабе: Км = Kl· KG ·H1; Kм = 10·200·350·103 =700кН.

Изгибающий момент в любом сечении: Миi = Kм · zi,

где zi – ордината эпюры в мм.

  1. С целью учета переменного диаметра вала принимаем участок с наибольшим диаметром (do) за основной и увеличиваем ординаты остальных участков эпюры в отношении моментов инерции сечения вала, для этого вводится коэффициент ;

В нашем случае для сплошного вала: ;

Для учета переменной температуры вала влияющей на величину модуля упругости вводят коэффициент ;

В нашем случае влиянием температурой пренебрегаем, таким образом, первоначально полученная эпюра Muзг изменится пропорционально произведению KIi·KE.

  1. Для построения упругой линии вала будем считать вал, находящийся под фиктивной нагрузкой измеряемой площадью эпюры изгибающих моментов.

Разделим эту площадь на ряд простых геометрических фигур.

В центре тяжести каждого участка эпюры прикладываем фиктивную силу:

, где fi – площадь соответствующего участка в масштабе чертежа.

Таблица №8

№ п/п

Диамер вала d, м

KI=(d0/di)4

Площадь участка в масштабе чертежа f, мм2

Значение фиктивной силы Ri, Н·мм2

1

0,175

8,987

26,931

1,69E+09

2

0,185

7,196

32,634

1,64E+09

3

0,205

4,773

108,840

3,64E+09

4

0,22

3,598

194,507

4,90E+09

5

0,24

2,541

443,231

7,88E+09

6

0,26

1,844

418,290

5,40E+09

7

0,274

1,495

510,793

5,35E+09

8

0,279

1,391

292,995

2,85E+09

9

0,279

1,391

336,733

3,28E+09

10

0,283

1,314

314,088

2,89E+09

11

0,283

1,314

377,398

3,47E+09

12

0,287

1,242

405,419

3,53E+09

13

0,289

1,208

376,558

3,18E+09

14

0,289

1,208

515,815

4,36E+09

15

0,295

1,113

377,264

2,94E+09

16

0,3

1,041

515,094

3,75E+09

17

0,303

1,000

451,480

3,16E+09

18

0,296

1,098

428,623

3,29E+09

19

0,289

1,208

626,802

5,30E+09

20

0,285

1,278

500,286

4,47E+09

21

0,279

1,391

620,096

6,04E+09

22

0,272

1,540

614,388

6,62E+09

23

0,269

1,610

639,868

7,21E+09

24

0,263

1,762

600,293

7,40E+09

25

0,239

2,583

227,828

4,12E+09

26

0,212

4,173

225,924

6,60E+09

27

0,192

6,202

63,268

2,75E+09

28

0,182

7,682

37,374

2,01E+09

  1. Строим многоугольник сил в масштабе KR=6·108 Н·м2/мм.

Определяем полюсное расстояние: Н20·I0/KR;

Е0=2,1·1011 Н/м2, ;

Так как величина Н2 получилась большой, то уменьшаем её в k раз. Таким образом H2’=Н2/k.

Примем k = 804,518, тогда:

Строим многоугольник фиктивных сил и упругую линию прогибов. Определяем истинные прогибы вала, умножив снятые с чертежа величины на Kl/k = 10/804,518= 0,01101, т.е. в одном миллиметре чертежа будет 0,0110 1мм прогиба.

Таблица №9

№ п/п

Стрела прогиба под грузом, по чертежу y, мм

Истинное значение стрелы прогиба, y, мм

G·y, Н·м

m·y2, кг·м2

1

2,98

0,0328

0,0062

2,056E-08

2

7,31

0,0804

0,0098

8,074E-08

3

11,53

0,1268

0,0615

7,946E-07

4

17,3

0,1903

0,1081

2,098E-06

5

24,44

0,2688

0,4995

1,369E-05

6

30,65

0,3372

1,3519

4,646E-05

7

35,16

0,3868

0,7367

2,905E-05

8

38,1

0,4191

0,5644

2,411E-05

9

39,97

0,4397

0,6059

2,716E-05

10

41,56

0,4572

0,5994

2,793E-05

11

42,96

0,4726

0,6432

3,098E-05

12

44,2

0,4862

0,8466

4,196E-05

13

45,12

0,4963

0,8823

4,464E-05

14

45,85

0,5044

1,0463

5,379E-05

15

46,19

0,5081

0,9512

4,927E-05

16

46,28

0,5091

1,1055

5,737E-05

17

46,04

0,5064

1,1709

6,045E-05

18

45,56

0,5012

1,1951

6,105E-05

19

44,66

0,4913

1,6945

8,486E-05

20

43,11

0,4742

1,6971

8,204E-05

21

41,02

0,4512

2,0160

9,273E-05

22

37,81

0,4159

2,1396

9,071E-05

23

33,26

0,3659

2,0176

7,525E-05

24

26,7

0,2937

1,7943

5,372E-05

25

20,11

0,2212

0,1378

3,108E-06

26

14,51

0,1596

0,1065

1,733E-06

27

8,49

0,0934

0,0138

1,316E-07

28

3,2

0,0352

0,0071

2,531E-08

  1. Определяем критическую частоту вращения ротора:

  1. Оценим виброустойчивость вала:

1,4·nкр1 < nраб < 0,7·nкр2;

nраб = 3000 об/мин; nкр1 = 1440,531 об/мин; nкр2 = 3,25·nкр1 = 3,25·1440,531 = 4681,725 об/мин;

2016,7434 < 3000 <3277,208;

Вывод: конструкция вала не удовлетворяет условиям прочности.