- •Маркировка
- •Классификация легированных сталей
- •Виды автомобильных стекол
- •Как обозначаются типы лобовых стекол
- •Методики нанесения оцинкования на автомобиль
- •Если брать во внимание функциональные характеристики, то наиболее эффективной является технология горячей оцинковки:
- •Катодная защита
- •1.Конструкция, назначение, тенденция применения и развития, анализ состояния для безотказной работы рулевого управления (червячное, реечное)
- •2.Конструкция, назначение, тенденция применения и развития, анализ состояния для безотказной работы гидравлического усилителя рулевого управления.
- •3.Конструкция, назначение, тенденция применения и развития, анализ состояния для безотказной работы тормозной системы (рабочая, стояночная, аварийная-запасная).
- •Раздаточная коробка
- •1. Условия испытаний
- •2. Испытательный стенд и аппаратура
- •Механические потери в двигателе
- •Определение экспериментальное
- •2.Оборудование и требования и условия снятия характеристик механических потерь.Гост 53639-2009, более подробно
- •6.1 Условия проведения испытаний
- •6.2 Определяемые параметры и погрешности измерений
- •6.3 Проведение испытаний
- •Защита от чрезвычайных ситуаций техногенного характера.
- •1. Выполнить расчет уровня шума на рабочем месте в цехе по ремонту и производству автомобилей. Ответ сопроводите примером расчета.
- •2. Нормирование шума. Показатели шумового воздействия.
- •2.2 Расчет уровня шума
- •Типичные технические решения
- •Принцип работы реечной рулевой тяги
- •Червячный привод
- •Винтовой редуктор
- •Как работает винтовой редуктор?
- •Рулевой механизм ваЗа
- •В деталях
- •Неприхотлив и надежен
- •Типичные неисправности
- •Настройка червячной рулевой
- •Реечное управление ваз
- •Регулировка рулевого механизма реечного типа на ваЗе
- •Обслуживание рулевых механизмов
- •Как создавался гидроусилитель
- •Устройство и принцип работы
- •Гур на «Ланос»
- •Типичные неисправности
- •Проблемы и способы решений
- •Обслуживание
- •Техническое обслуживание тормозной системы. Назначение тормозной системы автомобиля
- •2. Неисправности тормозной системы.
- •3.Техническое обслуживание тормозной системы.
- •Проверка работоспособности вакуумного усилителя
- •Регулировка привода тормозов
- •Регулировка стояночной тормозной системы
- •Проверка работоспособности регулятора давления на автомобиле.
- •Проверка трубопроводов и соединений.
- •4.Ремонт.
- •4Порядок разработки технического условия и технического описания на рулевое управление (червячное, реечное) наземных транспортно-технологических средств и их оборудования согласно стандартам.
- •Рулевое управление
- •5 Порядок разработки технического условия и технического описания на гидравлический усилитель рулевого управления наземных транспортно-технологических средств и их оборудования согласно стандартам.
- •3. Назначение и основные типы раздаточных коробок
- •Дисциплина: «Энергетические установки автомобилей и тракторов» (проверяемая компетенция – пк-16): Владеть:
- •1. Назначение и требования к сцеплению
- •2. Анализ существующих конструкций сцепления
- •3. Предлагаемая конструкция
- •4. Расчет сцепления
- •4.1 Выбор основных параметров сцепления
- •4.2 Расчет сцепления на износ
- •4.3 Расчет деталей
- •4.3.1 Нажимной диск
- •4.3.2 Цилиндрическая нажимная пружина
- •4.4 Расчет вала сцепления
- •4.5 Ступица ведомого диска
- •4.6 Подшипник выключения сцепления
- •4.7 Расчет привода фрикционного сцепления
- •3.1.Расчет основных параметров кп
- •3.2.Расчет межосевого расстояния
- •3.3.Выбор основных параметров зубчатых колес
- •3.4.Определение габаритных размеров и массы кп, диаметров валов, основных размеров подшипников
- •5.1.2.Расчет зубьев шестерен на прочность
- •6. Расчет реакций опор валов кп
- •5.1.3.Расчет подшипников
- •6.Выбор подшипников и расчет их на долговечность.
- •6.1.Расчет подшипников на долговечность.
- •Выбранные подшипники:
- •6.3.Расчет подшипников при статическом нагружении
- •6.4.Посадки подшипников
- •6.5.Материалы и общие условия
- •1. Анализ изменения параметров двигателей внутреннего сгорания (бензиновых и дизельных) в условиях скоростных характеристик по результатам стендовых испытаний.
- •3. Сравнительный анализ рабочего процесса четырехтактных и двух-тактных двигателей внутреннего сгорания.
4.3 Расчет деталей
4.3.1 Нажимной диск
Нажимной диск обычно выполняется из чугуна, который имеет низкое сопротивление растяжению и при воздействии центробежных сил может разрушится. Поэтому он проверяется по величине окружной скорости
4.3.2 Цилиндрическая нажимная пружина
Нажимное усилие одной пружины вычисляют по формуле
где Р1 – номинальная сила, действующая на пружину;
Zn – число пружин;
Dl – рабочий ход пружины, принимаем равным 3,0 мм
При выключении сцепления деформация пружин увеличивается на величину хода Dl, в результате чего сила упругости возрастает до значения Р2 . Управление сцеплением не затрудняется, если усилие пружин при деформации увеличится на величину не более 10-20%,т.е.
Задаемся индексом пружины
Определяем коэффициент, учитывающий кривизну витков и влияние поперечной силы
Диаметр
проволоки
С ГОСТ 14963-78 номинальный диаметр принимаем d = 5,0 мм
Средний диаметр пружины:
Жесткость пружины составляет величину
Число рабочих витков пружины:
где G – модуль упругости при кручении;
принимаем G = 80 Гпа
Полное число витков
Так как посадка витка на виток не допустима, то при предельной нагрузке Р2 , должен оставаться зазор между витками
Шаг пружины t, в свободном состоянии
Высота полностью сжатой пружины
Высота пружины в свободном состоянии
Высота пружины при предварительной деформации (под нагрузкой Р1 )
4.4 Расчет вала сцепления
Вал сцепления рассчитывают на кручение по максимальному крутящему моменту двигателя Me max . Диаметр вала в самом узком сечении должен быть не менее
где [t] – допускаемые касательные напряжения, [t] = 100 МПа
В соответствии с ГОСТ 6636-69 – «Основные нормы взаимозаменяемости. Нормальные линейные размеры» расчетный диаметр вала принимаем dв = 21 мм.
4.5 Ступица ведомого диска
Для применяемых соотношений элементов шлицевых соединений основным является расчет на смятие
где a - коэффициент точности прилегания шлицев, a = 0,75;
z – число шлицев;
F – расчетная площадь шлицев, м2 ;
rср – средний радиус шлицев, м
Рабочая площадь шлицев
где l – рабочая длина шлицев;
D и d – диаметр вершин и диаметр впадин шлицев, соответственно, м;
f – фаска у головки зуба
Средний радиус шлицев
Для применяемых соотношений элементов шлицевых соединений основным является расчет на смятие
4.6 Подшипник выключения сцепления
Динамическая нагрузка на подшипник выключения
где Р – эквивалентная динамическая нагрузка, Н;
L – долговечность подшипника, млн. об.;
n- степень для шариковых подшипников, n = 3
Эквивалентная динамическая нагрузка определяется по формуле
где Q – осевое усилие на подшипник, Н;
Y – переводной коэффициент осевой нагрузки, Y = 2,3;
kб – коэффициент безопасности, kб = 1,55;
kт – температурный коэффициент, kт = 1,0
Осевое усилие, действующее на подшипник, вычисляется по формуле
где ip – передаточное число рычагов выключения, ip = 4
Эквивалентная динамическая нагрузка
Долговечность подшипника вычисляется по формуле
где 0,1 – коэффициент, показывающий, что время работы подшипника составляет 10% от времени работы автомобиля;
S – пробег автомобиля до капитального ремонта, км;
n – обороты подшипника при выключении сцепления, n = 1000 мин-1 ;
Vср – средняя скорость автомобиля, Vср = 35 км/ч
Динамическая нагрузка на подшипник выключения
