- •1. Автоматизированное проектирование эвм
- •1.1. Этапы жизненного цикла промышленных изделий
- •1.2. Сапр эвм и их место среди других автоматизированных систем
- •1.3. Проектирование технического объекта
- •1.4. Этапы проектирования сложных систем
- •2. Общие сведения о сапр
- •2.1. Блочно-иерархический подход к проектированию
- •2.2. Классификация сапр
- •2.3. Структура сапр
- •2.4. Виды обеспечения сапр
- •3. Математическое обеспечение сапр
- •3.1. Требования к математическому обеспечению
- •3.2. Требования к математическим моделям
- •3.3. Классификация математических моделей
- •3.4. Формализация проектных задач
- •3.5. Математические методы описания моделей конструкций эвм
- •3.3.1. Понятия теории множеств
- •3.5.2. Элементы теории графов
- •3.5.3. Деревья
- •3.5.4. Способы задания графов
- •3.5.5. Характеристические числа графов
- •3.6. Математические модели электрических схем
- •Модель схемы в виде двудольного графа g(e, u, p)
- •Модель схемы в виде гиперграфа h(e, u)
- •Модель схемы в виде мультиграфа g(e, u)
- •4. Алгоритмы автоматизированного проектирования эвм
- •4.1. Основные свойства алгоритмов
- •4.2. Элементы теории сложности
- •5. Алгоритмы компоновки
- •5.1. Алгоритм покрытия
- •5.2. Последовательный алгоритм компоновки
- •5.3. Итерационный алгоритм компоновки
- •5.4. Смешанный алгоритм компоновки
- •6. Алгоритмы размещения элементов
- •6.1. Постановка задачи
- •6.2. Математическая модель задачи размещения
- •6.3. Метод ветвей и границ
- •6.4. Конструктивные алгоритмы начального размещения
- •6.5. Алгоритм обратного размещения
- •6.6. Итерационные алгоритмы улучшения начального размещения
- •6.7. Алгоритм групповых перестановок
- •6.8. Непрерывно-дискретные методы размещения
- •6.9. Размещение разногабаритных элементов
- •7. Алгоритмы трассировки межсоединений
- •7.1. Алгоритмы построения минимальных связывающих деревьев
- •7.1.1. Алгоритм Прима
- •7.1.2. Алгоритм Краскала
- •7.1.3. Кратчайшие пути
- •7.1.4. Задачи, близкие к задаче о кратчайшем пути
- •7.1.5. Алгоритм Франка – Фриша
- •7.1.6. Задача Штейнера
- •7.2. Алгоритмы раскраски графа
- •7.2.1. Алгоритм Вейссмана
- •7.2.2. Алгоритм, использующий упорядочивание вершин
- •Порядок проведения проводников
- •Трассировка соединений
- •Волновой алгоритм трассировки
- •7.4.2. Волновой алгоритм с кодированием по mod 3
- •7.4.3. Метод путевых координат
- •7.4.4. Метод Акерса
- •7.4.5. Оптимизация пути по нескольким параметрам
- •7.4.6. Методы повышения быстродействия волнового алгоритма
- •7.4.7. Многослойная трассировка
- •7.5. Лучевые алгоритмы трассировки
- •7.5.1. Алгоритм Абрайтиса
- •7.6. Канальные алгоритмы трассировки
- •7.7. Программа автоматической трассировки specctra
- •8. Графо-теоретический подход к синтезу топологии
- •Разбиение графа на планарные суграфы
- •8.1.1. Построение графа пересечений g’
- •8.1.2. Нахождение максимальных внутренне устойчивых множеств
- •8.1.3. Выделение из g' максимального двудольного подграфа h'
- •8.2. Нахождение гамильтонова цикла. Алгоритм Робертса-Флореса
- •Нахождение гамильтонова цикла
- •8.2.2. Построение графа пересечений g'
- •8.2.3. Построение семейства ψg '
- •9. Верификация. Основные понятия
- •9.1. Место верификации при проектировании вычислительных систем
- •9.2. Изоморфизм графов
- •10. Нахождение эйлерова цикла
- •10.1. Алгоритм Флери
- •10.2. Сравнение эйлеровых и гамильтоновых циклов
- •11. Эволюционные алгоритмы оптимизации
- •11.1. Генетические алгоритмы
- •11.2. Биоинспирированные методы в оптимизации
- •11.2.1. Муравьиные методы и алгоритмы
- •11.2.2. Пчелиные методы и алгоритмы
- •Заключение
- •Список литературы
- •Законы Мэрфи для программистов. Теория ошибок
- •Алгоритмы конструкторского проектирования эвм Учебное пособие по дисциплине «Конструкторско-технологическое обеспечение производства эвм»
7.4.3. Метод путевых координат
Путевой координатой ячейки сi фронта Фk будем называть ту, соседнюю с ней ячейку фронта Фk-1, от которой она получает свой вес.
Для рассматриваемой окрестности соседства имеем четыре возможные путевые координаты , , , . Если имеется несколько соседних с сi ячеек фронта Фk-1 (рис. 7.27 (б)), то назначение путевой координаты производится согласно выбранному правилу приоритетов, т.е. порядку просмотра соседних ячеек (рис. 7.27(в)). Результат этапа распространения волны показан на рис. 7.28 (а).
Этап проведения пути состоит в отслеживании путевых координат в размеченном ДРП, начиная от ячейки - приемника В (рис. 7.28 (б)).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
0 |
0 |
1 |
1 |
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
1 |
0 |
0 |
1 |
1 |
0 |
|
|
|
|
|
|
В |
|
|
|
|
|
|
|
|
В |
|
|
|
1 |
1 |
1 |
|
1 |
В0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
0 |
1 |
|
0 |
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
0 |
0 |
|
|
0 |
1 |
0 |
|
А |
|
|
|
|
|
|
|
|
А |
|
|
|
|
|
|
|
0 |
А |
0 |
|
|
|
1 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
|
|
|
|
а |
|
|
|
|
|
|
|
|
б |
|
|
|
|
|
|
|
|
в |
|
|
|
Рисунок 7.28. Распространение волны методом путевых координат (а), построение пути (б), Метод Акерса (в)
При кодировании методом путевых координат каждая ячейка ДРП в процессе работы может быть в одном из следующих шести состояний: свободная, занятая или содержать путевую координату , , , . Таким образом, требуемое число разрядов памяти на одну ячейку ДРП составляет
N = ù log2(6) é= 3.
