- •Салу құралдары және олардың аксиомалары
- •Салу есептерін шешудің жалпы схемасы
- •Қайталау сұрақтары
- •Әдебиеттер
- •Салу есебі және оның шешімі
- •Негізгі салу есептері
- •Қайталау сұрақтары
- •Әдебиеттер
- •Көп кездесетін нүктелер жиыны немесе нүктелердің геометриялық орындары (нго).
- •Қайталау сұрақтары
- •Әдебиеттер
- •Қайталау сұрақтары
- •Әдебиеттер
- •Радикалдық өс және радикалдық центр
- •Қайталау сұрақтары
- •Әдебиеттер
- •Салу есебін шешуде қозғалысты пайдалану. Параллель көшіру әдісі
- •Қайталау сұрақтары
- •Әдебиеттер
- •Қайталау сұрақтары
- •Әдебиеттер
- •Қайталау сұрақтары
- •Әдебиеттер
- •Гомотетиялы фигураларды салу
- •Қайталау сұрақтары
- •Әдебиеттер
- •Инвертті фигураларды салу жолдары
- •Салу есептерін инверсия жәрдемімен шешу
- •Қайталау сұрақтары
- •Әдебиеттер
- •Формула арқылы берілген кесінді
- •Қарапайым формуламен берілген кесінділерді салу
- •Қайталау сұрақтары
- •Әдебиеттер
- •Дұрыс көпбұрыштарды салу
- •Қайталау сұрақтары
- •Әдебиеттер
- •Бұрыштың трисекциясы туралы есеп
- •Дөңгелектің квадратурасы туралы есеп
- •Кубты екі еселеу есебі.
- •Қайталау сұрақтары
- •Әдебиеттер
- •Әдебиеттер
- •Қайталау сұрақтары
- •Әдебиеттер
- •Қайталау сұрақтары
- •Әдебиеттер
- •Қайталау сұрақтары
- •Әдебиеттер
- •Қайталау сұрақтары
- •Әдебиеттер
- •Қайталау сұрақтары
- •Әдебиеттер
- •Жазық фигураның проекциясын салу
- •Қайталау сұрақтары
- •Әдебиеттер
- •Қайталау сұрақтары
- •Әдебиеттер
- •Жазық фигураларды кескіндеу
- •Қайталау сұрақтары
- •Әдебиеттер
- •Қайталау сұрақтары
- •Әдебиеттер
- •Үшбұрышты пирамиданы кескіндеу
- •Көпбұрышты пирамиданың кескінін салу
- •Призманың кескінін салу
- •Қайталау сұрақтары
- •Әдебиеттер
- •Конустың кескінін салу
- •Цилиндрдің кескінін салу
- •Шардың (сфераның) кескінін салу
- •Шарға іштей және сырттай сызылған денелердің кескіндерін салу
- •Қайталау сұрақтары
- •Әдебиеттер
- •Көпжақтар қимасы және оны салу барысында жіберілетін қателіктер
- •Қиюшы жазықтықтың ізі арқылы салынатын есептер
- •Қайталау сұрақтары
- •Әдебиеттер
- •Қайталау сұрақтары
- •Әдебиеттер
- •Қайталау сұрақтары
- •Әдебиеттер
- •Пайдаланылған әдебиеттер
- •Мазмұны
Қайталау сұрақтары
Параллель проекциялау барысында кесінділердің ұзындықтары сақтала ма?
Проекция жазықтығына түсірілген параллель проекциялары түзу және осы түзуге тиісті нүкте болып проекциялануы үшін, екі түзу өзара қалай орналасуы керек?
Проекция жазықтығына түсірілген параллель проекциялары түзу және осы түзуде жатпайтын нүкте болып проекциялануы үшін, екі түзу өзара қалай орналасуы керек?
Қандай жағдайда параллель екі түзудің параллель проекциясы екі нүкте болады?
Параллель проекциялауда бұрыштардың шамасы сақтала ма?
Проекция жазықтығына түсірілген параллель проекциялары түзу және осы түзуге тиісті нүкте болып проекциялануы үшін, түзу мен нүкте өзара қалай орналасуы керек?
Базистік тетраэдр және базистік төртбұрыш дегеніміз не?
Әдебиеттер
Рахымбек Д., Мадияров Н.К., Сейтжанова К.Б. Геометриялық салу есептері: Оқу құралы. Шымкент, «Нұрлы бейне», 2013. -287 бет
Мадияров Н.К. Геометриялық фигураларды кескіндеу: Оқу құралы. –Шымкент, 2007, -98 бет.
1) Шыныбеков Ә.Н. Геометрия. Жалпы білім беретін мектептің 10-сыныбына арналған оқулық. Алматы, “Атамұра”, 2003. 2) Геометрия 11, 2005
Погорелов А.В. Геометрия: Жалпы бiлiм беретiн мектептiң 7-11 сыныптарына арналған оқулық. – 2-басылымы. Алматы: Просвещение-Қазақстан, 2003, 152 б.
24-дәріс. Фигура кескіннің анықтамасы және оған қойылатын талаптар. Жазық фигураларды кескіндеу.
Анықтама: Фигураның кескіні деп оның параллель проекциясына ұқсас фигураны айтамыз.
Геометриялық есептерді шығару барысында қолданылатын фигура кескіндері еркін параллель проекциялау негізінде салынады. Яғни, берілген фигураның проекция жазықтығына қатысты орналасуы мен проекция бағыты анықталмайды. Стереометрияда әртүрлі жазықтықтарда жатқан жазық фигуралардың бәрін бір сызба жазықтығына кескіндеуге тура келеді. Мысалы, параллелепипедті кескіндеу кезінде, оның алты түрлі жазықтықтарда жатқан жақтарын (параллелограмдарды) бір жазықтыққа кескіндейміз.
Олай болса, кеңістік фигурасын кескіндеу үшін, біріншіден, жазық фигураларды кескіндеу мәселесіне тоқталу керек. Параллель проекциялау әдісін пайдаланып кескіндеу барысында, берілген фигура жазықтығы мен бейнелеу жазықтығы параллель болмаса, онда жазық фигура кескіндеу кезінде өзгеріске ұшырайтыны түсінікті.
Жазық фигураларды кескіндеу теориясы мынадай екі теоремаға негізделген.
Теорема-1 (Бар болудың бірінші теоремасы). Берілген қандай да болмасын үшбұрышты, кез келген үшбұрыш етіп кескіндеуге болады.
Теорема-2. Егер А/В/С/ үшбұрышының кескіні берілген болса, онда осы үшбұрыш жатқан жазықтықтың әрбір нүктесінің кескіні де бір мәнді анықталған болады.
Олай болса, осы теоремалар негізінде тең қабырғалы үшбұрыштың, тең бүйірлі үшбұрыштың және тікбұрышты үшбұрыштың кескіндері кез келген үшбұрыш болатынын көреміз. Сондай-ақ, үшбұрыш жазықтығының әрбір нүктесінің кескіні бірмәнді анықталады. Мысалы, А/В/С/ теңбүйірлі үшбұрышы берілген болсын (А/С/=В/С/). Осы үшбұрышты және оның С/Н/ биіктігін кескіндейік.
72-сурет. А/В/С/ теңбүйірлі үшбұрышы мен оның С/Н/ биіктігін кескіндеу реті.
Шешуі: А/В/С/ үшбұрышының кескіні 1-теоремаға сәйкес кез келген АВС үшбұрышы болады. Ал 2-теоремаға сәйкес А/В/С/ үшбұрышының әрбір нүктесінің кескіні АВС үшбұрышы арқылы бірмәнді анықталады. Демек, осы үшбұрыштың С/Н/ биіктігін енді бұлай еркін түрде кескіндей алмаймыз. А/Н/=Н/В/ болғандықтан және кескіндеу параллель проекциялау негізінде орындалатындығын ескеріп, параллель проекциялаудың 40-қасиетіне сәйкес (параллель проекциялауда, бір түзудің немесе параллель түзулердің бойында жатқан кесінділердің қатынасы сақталады) Н нүктесі АВ қабырғасының ортасы болады (72-сурет).
Осы теоремалар негізінде басқа да жазық фигураларды кескіндеуге тоқталайық.
Мысалы: А/В/С/D/ параллелограмын кескіндеу керек болсын.
Шешуі: Берілген параллелограмнан А/В/С/ үшбұрышын алып, 1-теорема бойынша оның кескіні АВС үшбұрышын аламыз. Параллелограмның төртінші төбесінің D кескіні параллель проекциялаудың қасиеттері бойынша салынады. Яғни, А/В/║С/D/ және В/С/║А/D/ болғандықтан, оған сәйкес АВ║СD, ВС║АD болады. Демек, кез келген параллелограмның кескіні параллелограмм болатындығы шығады.
Олай болса, кез келген көпбұрышты (жазық фигураны) кескіндеу үшін, оның құрылымынан қандай да бір үшбұрыш бөлініп алынып, 1-теорема негізінде кескінделіп, ал басқа төбелерінің кескіндері параллель проекциялаудың қасиеттері негізінде салынады екен. Сонда кескіндеу кезінде, жазық фигура құрамынан таңдалып алынған үшбұрыштың төбелері базистік нүктелер деп аталады.
Бұдан мынадай қорытындылар жасаймыз: Үшбұрыштың кескіні – кез келген үшбұрыш, параллелограмның, тіктөртбұрыштың, ромбының және квадраттың кескіндері – параллелограмм, ал трапецияның кескіні табандарының қатынасы сақталатын трапеция болады. Сондай-ақ, дұрыс бесбұрыштың кескіні – кез келген бесбұрыш, дұрыс алтыбұрыштың кескіні – кез келген алтыбұрыш т.с.с. Ал шеңбердің кескіні – эллипс.
