- •53.Цели и задачи хронобиологии и хрономедицины. Классификация ритмов и припода ритмов.Эндогенные ритмы и доказательство эндогенной природы активных ритмов. Опыт ж.Де Мейрана. Правило Ашоффа
- •55.Здоровье и биологические ритмы. Факторы определяющие здоровье. Уравнение Гомперца-Мейкема.
- •56.Предмет, задачи, методы генетики. Этапы развития генетики. Вклад ученых в развитие генетики. Значение генетики для медицины.
- •57. Генотип, геном, фенотип. Фенотип как результат реализации наследственной информации в определенных условиях среды.
- •58. Взаимодействие аллелей в детерминации признаков: доминирование, промежуточное проявление, рецессивность, кодоминирование, аллельная комплементация и исключение.
- •59. Кариотип человека. Характеристика методов дифференциального окрашивания хромосом. Тест полового хроматина и его применение в медицине.
- •60. Наследственность и изменчивость – фундаментальные свойства живого, их диалектическое единство.
- •61.Общее понятие о генетическом материале и его свойствах: хранение, изменение, репарация, передача, реализация генетической информации.
- •62 Множественные аллели и полигенное наследование на примере человека. Наследование гиперхолестеринемии, муковисцидоза, серповидноклеточной анемии, фенилкетонурии и др.
- •63.Наследование групп крови и резус-фактора. Практическое значение.
- •64. Основные положения хромосомной теории наследственности. Кариотип и идеограмма хромосом человека. Характеристика кариотипа человека в норме. Половой хроматин.
- •66. Цитоплазматическая наследственность. Роль в передаче наследственных заболеваний. Наследование зрительной невропатии Лебера и др.
- •67.Человек как специфический объект генетического анализа. Методы изучения наследственности человека. Кариотипирование и экспресс-анализ полового хроматина в медицине.
- •68. Основные методы изучения генетики человека (генеалогический, онтогенетический, цитогенетический, близнецовый, популяционный).
- •71.Характеристика методов пренатальной диагностики. Критерии определения типа наследования генеалогическим методом. Биохимические методы. Понятие о скрининг - программах.
- •72. Болезни с нетрадиционным наследованием. Митохондриальные болезни. Наследование невропатии Лебера.
- •74. Генная инженерия. Программа «Геном человека». Алгоритм генной инженерии. Понятие о генетических векторах. Генная терапия.
- •75. Цели и задачи программы «Геном человека». Тканевая и генная инженерия. Стволовые клетки и проблема клонирования особей и тканей. Принципы методики.
- •76.Использование молекулярной биологии в медицинских целях.Генная терапия. Ее методы. Проблемы биотехнологий в медицине и промышленности.
- •78. Модификационная изменчивость. Норма реакции генетически детермированных признаков. Фенокопии. Адаптивный характер модификаций. Взаимодействие среды и генотипа в проявлении признаков человека.
- •82.Генные мутации. Сущность и механизм возникновения молекулярно-наследственных болезней человека (фенилкетонурия, серповидно-клеточная анемия и др.)
- •84. Сущность молекулярных наследственных болезней человека (фенилкетонурия, серповидноклеточная анемия, болезнь Вильсона, муковисцидоз и др.). Возможность их профилактики и лечения.
- •86.Жизненные циклы паразитов. Чередование поколений и феномен смены хозяев. Промежуточные и основные хозяева на примере лентеца широкого.
- •87. Методы диагностики паразитарных болезней.
- •88.Популяционный уровень взаимодействия паразитов и хозяев. Типы, принципы регуляции и механизмы устойчивости системы "паразит-хозяин".
- •18.8. Факторы восприимчивости хозяина к паразиту
- •18.9. Действие хозяина на паразита
- •18.10. Сопротивление паразитов реакциям иммунитета
- •89. Дизентерийная амёба и балантидий. Морфология, цикл развития, обоснование лабораторной диагностики, профилактика. Систематическое положение.
- •90. Характеристика класса жгутиконосцев. Природная очаговость лейшманиоза. Формы лейшманиоза.
- •91. Трихинелла. Систематическое положение, морфология, цикл развития, обоснование лабораторной диагностики, пути заражения, профилактика.
- •93.Лямблии. Морфология, цикл развития, пути заражения, обоснование методов лабораторной диагностики.
- •95. Многожгутиковые представители класса жгутиковых. Биология, пути заражения, патогенное значение, диагностика, профилактика заболеваний.
- •96. Диагностические признаки, систематика, биология переносчиков малярии.
- •97.Плоские черви. Характерные черты организации. Медицинское значение.
- •98.Ланцетовидный сосальщик. Систематическое положение, морфология, цикл развития, пути заражения, обоснование методов лабораторной диагностики, профилактика.
- •99. Кошачий сосальщик. Морфология, цикл развития, пути заражения, обоснование методов лабораторной диагностики и профилактики. Описторхоз – краевая патология Тюменской области.
- •100. Шистосомы. Морфология, цикл развития, обоснование методов лабораторной диагностики, профилактики.
72. Болезни с нетрадиционным наследованием. Митохондриальные болезни. Наследование невропатии Лебера.
Болезни с нетрадиционным типом наследования
В последние годы стало очевидным, что далеко не все случаи наследственной патологии у человека можно рассматривать как результат менделирующих генных мутаций, хромосомных аномалий или как мультифакториальные заболевания (МФЗ). В настоящее время описано достаточно много заболеваний, которые в современной классификации наследственной патологии человека объединяют в отдельную группу: болезни с нетрадиционным типом наследования. Среди них различают: болезни импринтинга, митохондриальные болезни, болезни экспансии тринуклеотидных повторов с явлением антиципации и др.
Болезни импринтинга. Особенности наследования и фенотипического проявления при болезнях импринтинга обусловлены явлением геномного импринтинга (ГИ) (импринтинг от англ. imprinting — запечатление).
Явление геномного импринтинга связывают со специфическими изменениями хромосом или их участков во время образования мужских и женских гамет. Этим объясняется дифференциальная маркировка отцовских и материнских хромосом у потомков.
Точные механизмы дифференциальной маркировки хромосом или их участков в сперматогенезе или овогенезе пока окончательно не выяснены. Однако, немаловажная роль, вероятно, принадлежит процессам специфического метилированияцитозиновых оснований ДНК, выключающим транскрипцию гена.
Импринтированные участки в хромосомах определенного родительского происхождения (отцовских иди материнских) избирательно репрессируются у потомка. В связи с этим фенотипически проявляется только информация, полученная от другого родителя, т.е. имеет место моноаллельная экспрессия. Следовательно, фенотипическое проявление мутантного аллеля зависит от того с какой половой клеткой (яйцеклеткой или сперматозоидом) он был передан потомку.
Митохондриальные болезни. Начиная с конца 80-х годов XX века получены убедительные доказательства связи некоторых видов наследственной патологии у человека с мутациями митохондриальной ДНК (см. гл. 4.1) В зависимости от типа мутаций митохондриальные болезни разделяют на 4 группы:
а) болезни, вызванные точковыми мутациями, приводящими к замене консервативных аминокислот в собственных белках митохондрий. К ним относятся пигментный ретинит и нейроофтальмопатияЛебера, при которой наступает двусторонняя потеря зрения. Выраженность клинических признаков у больных этими заболеваниями коррелирует с количеством мутантной мтДНК, которое у разных больных может варьировать от 5 до 100% всей мтДНК;
б) болезни, вызванные мутациями в генах т-РНК, приводящими к многочисленным дегенеративным заболеваниям с различной степенью тяжести клинических проявлений, коррелирующей с количеством мутантной мтДНК;
в) болезни вызванные делениями и дупликациями участков митохондриалъных генов. У человека описано тяжелое заболевание молодого и среднего возраста — отсроченная кардиопатия, при которой обнаружены делециимтДНКкардиоцитов. Заболевание носит семейный характер. В ряде случаев предполагается Х-сцепленное наследование, что позволяет думать о существовании ядерного гена, мутация которого вызывает делению до 50% мтДНКкардиоцитов;
г) болезни, вызванные снижением числа копий мтДНК, что является следствием определенных мутаций. К данной группе относятся летальная инфантильная дыхательная недостаточность и синдром молочнокислого ацидоза, при которых число копий мтДНК снижается до 1—2% от нормы. Снижение содержания мтДНК в клетках различных органов приводит к развитию миопатий, нефропатий, печеночной недостаточности и т.д. вследствие ослабления синтеза белков, кодируемых мтДНК.
Изменения в ДНК митохондрий сопровождаются нарушением их функций, связанных с клеточным дыханием. Это определяет характер и степень тяжести клинических проявлений митохондриалъных болезней.
Выдвинута также гипотеза о том, что накопление спонтанно возникающих мутаций мтДНК является звеном механизмов старения и развития дегенеративных процессов у человека.
Болезни экспансии тринуклеотвдных повторов с явлением антиципации. Под генетической антиципацией (или упреждением) понимается более раннее проявление и возрастание тяжести симптомов наследственного заболевания в последующих поколениях родословной. Антиципация реально проявляется при определенных видах моногенной неврологической патологии, а также при некоторых мультифакториальных заболеваниях.
В начале 90-х годов XX века при исследовании ряда тяжелых неврологических заболеваний были обнаружены «динамические» мутации с экспансией (резким увеличением числа копий) тринуклеотидных повторов у индивидов в последующих поколениях родословной. Развивающиеся в результате таких мутаций наследственные заболевания характеризуются четко выраженным проявлением антиципации.
Феномен экспансии числа тринуклеотидных повторов был впервые обнаружен при исследовании синдрома Мартина—Белла или синдрома фрагильной (ломкой) Х-хромосомы, основным фенотипическим проявлением которого является умственная отсталость. Синдром ломкой Х-хромосомы характеризуется довольно широкой распространенностью в популяции (1:1000) и необычным характером наследования. Лишь у 80% мужчин-носителей мутантного локуса имеются клинические и цитогенетические признаки заболевания. 20% носителей как клинически, так и цитогенетически нормальны, но после передачи мутации всем своим дочерям они могут иметь пораженных внуков. Неэкспрессируемый мутантный ген в таком случае становится экс-прессируемым в последующих поколениях.
Таким образом мутантный ген при синдроме ломкой Х-хромосомы может существовать в двух формах, отличающихся по своей пенетрантности. Одна — фенотипически не проявляющаяся — премутация, которая при прохождении через женский мейоз превращается в другую форму — полную мутацию. При таком необычном способе наследования и фенотипического проявления мутантного гена, отличном от классического Х-сцепленного наследования, обнаруживается феномен антиципации — более тяжелое проявление заболевания в последующих поколениях.
В основе клинических проявлений и цитологической нестабильности в локусе, ответственном за синдром ломкой Х-хромосомы, лежит многократное увеличение повторов тринуклеотида ЦГГ. В норме число повторов колеблется от 5 до 50. Премутация — неэкспрессируемая форма — характеризуется увеличением числа повторов до 50—200. Возрастание числа повторов тринуклеотида ЦГГ свыше 200 приводит к клинической манифестации заболевания и цитогенетическому проявлению ломкой Х-хромосомы. Как правило, у пораженных лиц наблюдается также аномальное метилирование ДНК, приводящее к репрессированию гена.
Интересно, что переход от состояния премутации к полной мутации возникает при передаче от матери, причем экспансия ЦГГ-повторов значительно выше при передаче от матери к сыну, чем от матери к дочери.
Антиципация, характерная для синдрома ломкой Х-хромосомы, объясняется четкой связью между числом тринуклеотидных повторов и тяжестью клинических проявлений заболевания с цитологической экспрессией ломкости Х-хромосомы.
73. Генетический полиморфизм человечества: масштабы, факторы формирования. Медико-биологические и социальные аспекты генетического многообразия человечества. Генетический и мутационный груз и их биологическая сущность.
Генетическое разнообразие представляет собой важный компонент генетической характеристики популяции, группы популяций или вида. Генетическое разнообразие, в зависимости от выбора рассматриваемых генетических маркеров, характеризуется несколькими измеряемыми параметрами:
1. Средняя гетерозиготность.
2. Число аллелей на локус.
3. Генетическое расстояние (для оценки межпопуляционного генетического разнообразия).
Полиморфизм бывает:
- генный;
- хромосомный;
- переходный;
- сбалансированный.
Генетический полиморфизм наблюдается, когда ген представлен более чем одним аллелем. Пример – системы групп крови.
Хромосомный полиморфизм – между особями имеются различия по отдельным хромосомам. Это результат хромосомныхаббераций. Есть различия в гетерохроматиновых участках. Если изменения не имеют патологических последствий – хромосомный полиморфизм, характер мутаций – нейтрален.
Переходный полиморфизм – замещение в популяции одного старого аллеля новым, который более полезен в данных условиях. У человека есть ген гаптоглобина - Нр1f, Hp 2fs. Старый аллель - Нр1f, новый - Нр2fs. Нр образует комплекс с гемоглобином и обусловливает слипание эритроцитов в острую фазу заболеваний.
Сбалансированный полиморфизм – возникает, когда ни один из генотипов преимущества не получает, а естественный отбор благоприятствует разнообразию.
Все формы полиморфизма очень широко распространены в природе в популяциях всех организмов. В популяциях организмов, размножающихся половым путем, всегда есть полиморфизм.
Беспозвоночные животные полиморфнее, чем позвоночные. Чем полиморфнее популяция, тем более она эволюционно пластична. В популяции большие запасы аллелей не обладают максимальной приспособленностью в данном месте в данное время. Эти запасы встречаются в небольшом количестве и гетерозиготном состоянии. После изменений условий существования они могут стать полезными и начать накапливаться – переходный полиморфизм. Большие генетические запасы помогают популяции реагировать на окружающую среду. Одним из механизмов, поддерживающих разнообразие – превосходство гетерозигот. При полном доминировании – нет проявления, при неполном доминировании наблюдается гетерозис. В популяции отбор поддерживает генетически неустойчивую гетерозиготную структуру, и такая популяция содержит 3 типа особей (АА, Аа, аа). В результате действия естественного отбора происходит генетическая гибель, снижающая репродуктивный потенциал популяции. Численность популяции падает. Поэтому генетическая гибель – бремя для популяции. Ее также называют генетическим грузом.
Генетический груз – часть наследственной изменчивости популяции, определяющая появление менее приспособленных особей, подвергающихся избирательной гибели в результате естественного отбора.
Существует 3 типа генетического груза.
1. Мутационный.
2. Сегрегационный.
3. Субституционный.
Каждый тип генетического груза коррелирует с определенным типом естественного отбора.
Мутационный генетический груз - побочное действие мутационного процесса. Стабилизирующий естественный отбор удаляет вредные мутации из популяции.
Сегрегационный генетический груз – характерен для популяций, использующих преимущество гетерозигот. Удаляются хуже приспособленные гомозиготные особи. Если обе гомозиготы летальны – половина потомков погибает.
Субституционный генетический груз – происходит замена старого аллеля новым. Соответствует движущей форме естественного отбора и переходному полиморфизму.
генетический полиморфизм создает все условия для протекающей эволюции. При появлении нового фактора в среде популяция способна адаптироваться к новым условиям. Например, устойчивость насекомых к различным видам инсектицидов.
