- •127994, Москва, ул. Образцова, д. 9, стр. 9.
- •Пояснительная записка
- •Алгоритм формирования компетенций студента в процессе самостоятельной работы
- •Методика подготовки студентов к семинарскому / практическому занятию
- •Требования к выступлению студента
- •2. Тематика и содержание семинаров и практических занятий
- •Раздел 1. Математические модели и оптимизация в экономике. Тема 1. Введение. Общее представление о статической задаче оптимизации
- •Раздел 2. Задача нелинейного программирования
- •Раздел III. Задача линейного программирования
- •Тема 5. Формулировка задачи линейного программирования (лп). Примеры задач лп. Стандартная (нормальная) и каноническая формы представления задачи лп и сведение к ним.
- •Раздел IV. Оптимизация в условиях неопределенности
- •Тема 7. Принятие решение при случайных параметрах. Вероятностная информация о параметрах. Принятие решений на основе математического ожидания. Случайность и риск. Учет склонности к риску.
- •Раздел V. Основные понятия многокритериальной оптимизации
- •Тема 9. Понятие лица, принимающего решение. Основные типы методов решения задач многокритериальной оптимизации. Методы аппроксимации паретовой границы.
- •Раздел VI. Оптимизация динамических систем
- •Тема 10. Динамические задачи оптимизации.
- •Методические указания и требования к самостоятельной рабоТе
- •1. Методические рекомендации по работе
- •С учебной и научной литературой
- •2. Методические рекомендации по выполнению реферата
- •Примерная тематика рефератов
- •3. Методические рекомендации по изучению содержания основных разделов дисциплины
- •Раздел I. Тема 1. Решить задачу линейного программирования графическим методом
- •Раздел I. Тема 2. Решить задачу целочисленного линейного программирования методом ветвей и границ, учитывая целочисленность переменных.
- •Раздел II. Тема 3. Решить методом ветвей и границ следующую задачу коммивояжера:
- •Раздел II. Тема 3. Решить транспортную задачу.
- •Раздел III. Задача линейного программирования
- •Тема 5. Формулировка задачи линейного программирования (лп).
- •Раздел IV. Тема 6. Симплексный метод решения задачи линейного программирования
- •Раздел IV. Тема 7. Теория двойственности. Двойственная задача к задаче планирования торговли. Решение задачи линейного программирования двойственным симплексным методом
- •Раздел V. Тема 8. Целочисленное программирование
- •Раздел V. Тема 9. Транспортная задача. Нахождение оптимального плана методом потенциалов
- •Решение типовых задач графический способ решения задачи линейного программирования типовой пример 1
- •Типовой пример 2
- •Двойственная задача линейного программирования
- •Анализ модели на чувствительность
- •Изменение условий задачи влияющих на допустимость решения.
- •Изменения условий задачи влияющих на оптимальность решения.
- •Тесты для самоконтроля Раздел I.
- •Вопрос 4. Как классифицируются решения по содержанию?
- •Раздел II.
- •Раздел 3
- •Раздел 4
- •Раздел 5
- •Раздел 6
- •Тема II
- •Тема III
- •Тема IV
- •Тема VI
- •Основная литература
- •Дополнительная литература
- •Базы данных, информационно-справочные и поисковые системы
- •Учебно-методические издания в электронном виде
- •Критерии оценки самостоятельной работы студентов
Раздел IV. Оптимизация в условиях неопределенности
Тема 6. Задача выбора решений в условиях неопределенности. Критерии выбора решений в условиях неопределенности (принцип гарантированного результата, критерий Гурвица, критерий Байеса-Лапласа, критерий Сэвиджа). Применение принципа гарантированного результата в задачах экономического планирования. Множество допустимых гарантирующих программ. Наилучшая гарантирующая программа.
Тема 7. Принятие решение при случайных параметрах. Вероятностная информация о параметрах. Принятие решений на основе математического ожидания. Случайность и риск. Учет склонности к риску.
Вопросы к обсуждению:
Отличие области допустимых решений задач ЛП от области допустимых решений задач дискретного ЛП.
Какой метод эффективнее: ветвей и границ для ЦЛП или простого перебора? Почему?
Какие вершины называются прозондированными в методе ветвей и границ для ЦЛП?
Постановка и формы записи задачи ЛП.
Геометрическая интерпретация задачи ЛП (постановка задачи, алгоритм решения).
Задания для самостоятельной работы: подготовить доклад на тему «Метод ветвей и границ для решения задачи ЦЛП»
Основная литература.
1. Глухов В.В., Медников М.Д., Коробко С.Б. Математические методы и модели для менеджмента. СПб.: Лань, 2000. (гл. 8, 9)
Дополнительная литература.
1. Райфа Г. Анализ решений. М.: Наука, 1977.
2. Clemen, R.T. (1996) Making Hard Decisions. Belmont: Duxbury Press.
Цель занятия ― формирование у обучающегося компетенций: ПК-1, ПК-4, ПК-5 ПК-15
Раздел V. Основные понятия многокритериальной оптимизации
Тема 8. Происхождение и постановка задачи многокритериальной оптимизации. Пример: задача поиска разумных экономических решений с учетом экологических факторов. Множество достижимых критериальных векторов. Доминирование и оптимальность по Парето. Эффективные решения и паретова граница. Теорема Куна-Таккера в выпуклых задачах многокритериальной оптимизации.
Тема 9. Понятие лица, принимающего решение. Основные типы методов решения задач многокритериальной оптимизации. Методы аппроксимации паретовой границы.
Вопросы к обсуждению:
Примеры математических моделей, в которых учитываются ограничения.
Какой вид имеет допустимая область при разных типах ограничений?
Учёт ограничения-равенства в методе прямой оптимизации.
Чем определяется количество множителей Лагранжа?
Почему при использовании штрафных функций решение лежит за границей допустимой области?
Как должен выбираться шаг в методах скорейшего поиска с учетом ограничений?
Задания для самостоятельной работы: подготовить доклад на тему «Изменение длины приведенного градиента по мере приближения к решению»
Основная литература.
Вентцель Е.С. Исследование операций. Задачи, принципы, методология. М.: Высшая школа, 2001. (гл. 2, § 6)
Дополнительная литература.
Ларичев О.И. Теория и методы принятия решений. М.: Логос, 2000.
Лотов А.В. Введение в экономико-математическое моделирование. М.: Издательство «Наука», 1984.
Подиновский В.В., Ногин В.Д. Парето-оптимальные решения многокритериальных задач. М.: Наука, 1982.
Штойер Р. Многокритериальная оптимизация: теория, вычисления и приложения. М.: Радио и связь, 1992.
Lotov A.V., Bushenkov V.A., and Kamenev G.K. (2004) Interactive Decision Maps. Approximation and Visualization of Pareto Frontier. Kluwer Academic Publishers.
Miettinen K. (1999) Nonlinear multi-objective optimization. Kluwer Academic Publishers.
Цель занятия ― формирование у обучающегося компетенций: ПК-1, ПК-4, ПК-5 ПК-15
