- •127994, Москва, ул. Образцова, д. 9, стр. 9.
- •Пояснительная записка
- •Алгоритм формирования компетенций студента в процессе самостоятельной работы
- •Методика подготовки студентов к семинарскому / практическому занятию
- •Требования к выступлению студента
- •2. Тематика и содержание семинаров и практических занятий
- •Раздел 1. Математические модели и оптимизация в экономике. Тема 1. Введение. Общее представление о статической задаче оптимизации
- •Раздел 2. Задача нелинейного программирования
- •Раздел III. Задача линейного программирования
- •Тема 5. Формулировка задачи линейного программирования (лп). Примеры задач лп. Стандартная (нормальная) и каноническая формы представления задачи лп и сведение к ним.
- •Раздел IV. Оптимизация в условиях неопределенности
- •Тема 7. Принятие решение при случайных параметрах. Вероятностная информация о параметрах. Принятие решений на основе математического ожидания. Случайность и риск. Учет склонности к риску.
- •Раздел V. Основные понятия многокритериальной оптимизации
- •Тема 9. Понятие лица, принимающего решение. Основные типы методов решения задач многокритериальной оптимизации. Методы аппроксимации паретовой границы.
- •Раздел VI. Оптимизация динамических систем
- •Тема 10. Динамические задачи оптимизации.
- •Методические указания и требования к самостоятельной рабоТе
- •1. Методические рекомендации по работе
- •С учебной и научной литературой
- •2. Методические рекомендации по выполнению реферата
- •Примерная тематика рефератов
- •3. Методические рекомендации по изучению содержания основных разделов дисциплины
- •Раздел I. Тема 1. Решить задачу линейного программирования графическим методом
- •Раздел I. Тема 2. Решить задачу целочисленного линейного программирования методом ветвей и границ, учитывая целочисленность переменных.
- •Раздел II. Тема 3. Решить методом ветвей и границ следующую задачу коммивояжера:
- •Раздел II. Тема 3. Решить транспортную задачу.
- •Раздел III. Задача линейного программирования
- •Тема 5. Формулировка задачи линейного программирования (лп).
- •Раздел IV. Тема 6. Симплексный метод решения задачи линейного программирования
- •Раздел IV. Тема 7. Теория двойственности. Двойственная задача к задаче планирования торговли. Решение задачи линейного программирования двойственным симплексным методом
- •Раздел V. Тема 8. Целочисленное программирование
- •Раздел V. Тема 9. Транспортная задача. Нахождение оптимального плана методом потенциалов
- •Решение типовых задач графический способ решения задачи линейного программирования типовой пример 1
- •Типовой пример 2
- •Двойственная задача линейного программирования
- •Анализ модели на чувствительность
- •Изменение условий задачи влияющих на допустимость решения.
- •Изменения условий задачи влияющих на оптимальность решения.
- •Тесты для самоконтроля Раздел I.
- •Вопрос 4. Как классифицируются решения по содержанию?
- •Раздел II.
- •Раздел 3
- •Раздел 4
- •Раздел 5
- •Раздел 6
- •Тема II
- •Тема III
- •Тема IV
- •Тема VI
- •Основная литература
- •Дополнительная литература
- •Базы данных, информационно-справочные и поисковые системы
- •Учебно-методические издания в электронном виде
- •Критерии оценки самостоятельной работы студентов
Тема 5. Формулировка задачи линейного программирования (лп). Примеры задач лп. Стандартная (нормальная) и каноническая формы представления задачи лп и сведение к ним.
Свойства допустимого множества и оптимального решения в задаче ЛП. Основные представления о методах решения задач ЛП, основанных на направленном переборе вершин (симплекс-метод и др.).
Функция Лагранжа и условия Куна-Таккера в задаче ЛП. Двойственные задачи линейного программирования. Теоремы двойственности. Интерпретация двойственных переменных. Анализ чувствительности оптимального решения к параметрам задачи линейного программирования.
Некоторые специальные задачи линейного программирования (транспортная, производственно-транспортная и т.д.).
Основная литература.
Интрилигатор М. Математические методы оптимизации и экономическая теория. М.: Изд. Айрис-Пресс, 2002. (гл. 5)
Вентцель Е.С. Исследование операций. Задачи, принципы, методология. М.: Высшая школа, 2001. (гл. 3)
Дополнительная литература.
Габасов Р., Кириллова Ф.М. Методы оптимизации. Минск: Изд. БГУ, 1975.
Хазанова Л.Э. Математические методы в экономике. Учебное пособие. М.: Изд. БЕК, 2002.
Красс М.С., Чупрынов Б.П. Основы математики и ее приложения в экономическом образовании. М.: Изд. ДЕЛО, 2003.
Компьютерные методы оптимизации
Градиентные методы в задаче безусловной оптимизации. Метод Ньютона. Методы штрафных функций в задачах линейного и нелинейного программирования. Линейное программирование в среде MS Excel.
Основные представления о методах оптимизации в невыпуклом случае. Целочисленные задачи линейного программирования.
Вопросы к обсуждению:
В чем специфика модели транспортной задачи как задачи линейного программирования? Какие методы применяются для решения транспортной задачи?
Что понимается под открытой и закрытой транспортными задачами? Как выполняется сведение открытой транспортной задачи к закрытому типу? В чем заключается условие баланса?
Для чего используются методы северо-западного угла и минимального элемента? В чем их суть? Сравните эти методы по эффективности.
Дайте определения понятиям: допустимый план, опорный план, вырожденный опорный план, оптимальный план, потенциал, псевдостоимость, цикл, перенос по циклу, цена цикла.
Дайте экономическую интерпретацию метода потенциалов.
Решите транспортные задачи методом потенциалов.
Задания для самостоятельной работы: подготовить доклад на тему «Алгоритма метода потенциалов для решения транспортной задачи (на произвольном примере)»
Основная литература.
Интрилигатор М. Математические методы оптимизации и экономическая теория. М.: Изд. Айрис-Пресс, 2002. (гл. 4, 5)
Вентцель Е.С. Исследование операций. Задачи, принципы, методология. М.: Высшая школа, 2001. (гл. 3).
Дополнительная литература.
Васильев Ф.П. Методы оптимизации. М.: Издательство «Факториал», 2001.
Моисеев Н.Н., Иванилов Ю.П., Столярова Е.Н. Методы оптимизации. М.: Наука, 1978.
Поляк Б.Т. Введение в оптимизацию. М.: Наука, 1983.
Fletcher R. (2000) Practical methods of Optimization. Wiley.
Rardin R.L. (1997) Optimization in Operations Research. Prentice Hall.
Walsey L.A. (1998) Integer Programming. Wiley.
Цель занятия ― формирование у обучающегося компетенций: ПК-1, ПК-4, ПК-5 ПК-15
