- •Теория вероятностей и математическая статистика
- •Нижневартовск
- •Вариант 3
- •Вариант 4
- •Вариант 5
- •Вариант 6
- •Вариант 7
- •Вариант 8
- •Вариант 9
- •Вариант 10
- •Вариант 11
- •Вариант 12
- •Вариант 13
- •Вариант 14
- •Вариант 15
- •Вариант 16
- •Вариант 17
- •Вариант 18
- •Вариант 19
- •Вариант 20
- •Вариант 21
- •Вариант 22
- •Вариант 23
- •Вариант 24
- •Вариант 25
- •Дана функция распределения f(х) случайной величины х.
- •Образец выполнения задания
Вариант 11
Производится наблюдение за группой, состоящей из 4 однородных объектов. Каждый из них за время наблюдения может быть обнаружен или не обнаружен. Рассматриваются события: А – обнаружен ровно один из 4 объектов; В – обнаружен хотя бы один объект; С – обнаружено не менее двух объектов; Д - обнаружено ровно два объекта; Н – обнаружены все 4 объекта. В чем состоят события: а) АВ; б)
;
в) ВН?
Совпадают ли события ВС
иД?Для поражения цели достаточно трех попаданий, при двух попаданиях вероятность поражения цели равна 0,6, при одном попадании – 0,3. Какова вероятность поразить цель, если три охотника стреляют залпом, первый охотник попадает с вероятностью 0,8, второй – 0,7, третий – 0,4.
Детали, выпускаемые цехом, с вероятностями, равными 0,2, 0,3, 0,5 поступают одному из трех контролеров, вероятность обнаружить брак для каждого из которых равна соответственно 0,7, 0,9 и 0,5. Случайно взятая из числа проверяемых деталь оказалась бракованной. Вероятнее всего, какой из контролеров обнаружил брак?
Вероятность рождения мальчика 0,515. Найти вероятность того, что в семье из 5 детей не более двух мальчиков.
В лотерее из 100 билетов разыгрываются три вещи, стоимость которых 1500, 200 и 600 рублей. Составить закон распределения суммы выигрыша для лица, имеющего два билета. Найти М(Х), D(X), σ(X) и F(X) этой случайной величины.
Дана функция распределения случайной величины Х. Найти: а) плотность распределения f(X); б) построить графики F(X) и f(X); в) в) М(Х); г) D(X); д) σ(X); е) .
Дана плотность распределения
непрерывной случайной величины Х.
Найти: а) параметр а;
б) функцию распределения F(X).
Вариант 12
Эксперимент состоит в бросании игральной кости. Пусть событие: А1 – появление четного числа очков; А2 – появление двух очков; А3 – появление четырех очков; А4 – появление шести очков. Докажите на вероятностном языке и на теоретико-множественном языке, что а) А2А3=Ø; б)
в)
.10 вариантов контрольной работы распределяются случайным образом среди 5 студентов, сидящих в одном ряду, причем каждый получает по одному варианту. Найти вероятность того, что: а) варианты с номерами 1 и 2 останутся неиспользованными; б) варианты с номерами 1 и 2 достанутся рядом сидящим студентам; в) будут распределены последовательные номера вариантов.
На сборку поступило 3000 деталей, изготовленных первым автоматом, 2000 деталей – вторым. Первый автомат делает 0,2% брака, второй – 0,3%. Проверенная деталь оказалась бракованной. Вероятнее всего, какой из автоматов изготовил ее?
Вероятность отказа локомотива на линии за время полного оборота составляет 0,01. Найти вероятность того, что в 8 поездок произойдет не более двух отказов локомотива на линии.
Составить закон распределения числа попаданий мячом в корзину при трех бросках, если вероятность попадания при одном броске равна 0,6. Найти М(Х), D(X), σ(X) и F(X) числа попаданий мячом в корзину.
Дана функция распределения
случайной величины Х.
Найти: а) плотность распределения f(X);
б) построить графики F(X)
и f(X);
в) в) М(Х);
г) D(X);
д) σ(X);
е)
.Дана плотность распределения
непрерывной случайной величины Х. Найти: а) параметр а; б) функцию распределения F(X).
