- •1.1. Закон сохранения электрического заряда.
- •1.2. Закон кулона.
- •1.3. Электростатическое поле.
- •1.4. Принцип суперпозиции. Электростатических полей.
- •1.5. Задачи электростатики.
- •1.6. Поле диполя.
- •2.1. Теорема гаусса
- •2.2. Применение теоремы гаусса для расчета
- •2.3. Теорема гаусса в дифференциальной форме.
- •3.1. Циркуляция вектора напряженности
- •3.2. Потенциал электростатического поля.
- •3.3. Напряженность, как градиент потенциала. Эквипотенциальные поверхности.
- •3.4. Вычисление разности потенциалов по напряженности поля.
- •4.1. Типы диэлектриков. Поляризация диэлектриков.
- •4.2. Поляризованность.
- •4.3. Электрическое смещение.
- •4.4. Теорема гаусса для электростатического
- •4.5. Условия на границе раздела
- •4. 6. Сегнетоэлектрики.
- •5.1. Проводники в электрическом поле.
- •5.2. Электрическая емкость проводника.
- •5.3. Конденсаторы.
- •Параллельное соединение конденсаторов.
- •2. Последовательное соединение конденсаторов.
- •5.4. Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля.
- •1. Энергия системы неподвижных точечных зарядов.
- •2. Энергия заряженного уединенного проводника.
- •3. Энергия заряженного конденсатора.
- •4. Энергия электростатического поля.
- •6.1. Электрический ток.
- •6.2. Сила и плотность тока.
- •6.3. Сторонние силы.
- •6.4. Закон ома.
- •6.5. Сопротивление проводников.
- •6.6. Зависимость сопротивления
- •7.1. Работа и мощность тока.
- •7.2. Закон джоуля - ленца.
- •7.3. Закон ома для неоднородного участка цепи.
- •7.4. Правила кирхгофа для разветвленных
- •8.1. Элементарная классическая теория
- •8.2. Вывод основных законов электрического тока в классической теории электропроводности металлов.
- •1. Закон Ома.
- •2. Закон Джоуля - Ленца.
- •3. Закон Видемана - Франца.
- •8.3. Работа выхода электронов из металла.
- •9.1. Эмиссионные явления и их применение.
- •1. Термоэлектронная эмиссия — это испускание электронов нагретыми металлами.
- •9.2. Ионизация газов.
- •9.3. Газовый разряд.
- •9.4. Самостоятельный газовый разряд.
- •3. Дуговой разряд.
- •9.5. Плазма и ее свойства.
- •10.1. Магнитное поле.
- •10.2. Закон био-савара-лапласа.
- •Принцип суперпозиции полей в магнетизме
- •10.3. Закон ампера.
- •10.4. Магнитное поле движущегося заряда.
- •11.1. Действие магнитного поля на движущийся заряд.
- •11.2. Движение заряженных частиц в
- •11.3. Ускорители заряженных частиц.
- •11.4. Эффект холла.
- •11.5. Циркуляция вектора индукции
- •12.1. Магнитное поле соленоида и тороида.
- •12.2. Магнитное поле земли.
- •12.3. Поток вектора магнитной индукции.
- •12.4. Работа по перемещению проводника и
- •13.1. Явление электромагнитной индукции. Закон фарадея и его вывод из закона сохранения энергии.
- •13.2. Вращение рамки в магнитном поле.
- •13.3. Вихревые токи (токи фуко).
- •14.1. Индуктивность контура. Самоиндукция.
- •14.2. Токи при размыкании и замыкании цепи.
- •14.3. Взаимная индукция. Трансформаторы. Передача электрической энергии.
- •14.4. Энергия магнитного поля.
- •15.1. Магнитные моменты электронов и атомов.
- •15.2. Магнитное поле в веществе.
- •15.3. Намагниченность.
- •15.4. Условия на границе раздела двух магнетиков.
- •15.5. Ферромагнетики и их свойства.
- •15.6. Природа ферромагнетизма.
- •16.1. Колебания.
- •16.2. Переменный ток. Получение переменного тока.
- •16.3. Закон ома для цепи переменного тока.
- •16.4. Цепь переменного тока, содержащая r,c, l.
- •16.6. Резонанс токов.
- •16.7. Мощность, выделяемая в цепи
- •17.1. Гармонические колебания в
- •17.2. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •17.3. Сложение взаимно перпендикулярных колебаний
- •17.4. Свободные затухающие колебания в
- •17.5. Вынужденные колебания.
- •17.6. Дифференциальные уравнения
- •17.7. Резонанс в колебательном контуре..
- •18.1. Вихревое электрическое поле.
- •18.2. Ток смещения.
- •18.3. Уравнение максвелла для
- •1.1. Закон сохранения электрического заряда.
15.2. Магнитное поле в веществе.
ДИА- И ПАРА- МАГНЕТИКИ.
Всякое вещество является магнетиком, т. е. оно способно под действием магнитного поля приобретать магнитный момент (намагничиваться). Для понимания механизма этого явления необходимо рассмотреть действие магнитного поля на движущиеся в атоме электроны.
Ради простоты предположим, что электрон в атоме движется по круговой орбите. Если орбита электрона ориентирована относительно вектора В произвольным образом, составляя с ним угол ,, то можно доказать, что она приходит в такое движение вокруг В, при котором вектор магнитного момента рm, сохраняя постоянным угол , вращается вокруг вектора В с некоторой угловой скоростью. Такое движение в механике называется прецессией. Прецессию вокруг вертикальной оси, проходящей через точку опоры, совершает, например, диск волчка при замедлении движения.
Таким образом, электронные орбиты атома под действием внешнего магнитного поля совершают прецессионное движение, которое эквивалентно круговому току. Так как этот микроток индуцирован внешним магнитным полем, то, согласно правилу Ленца, у атома появляется составляющая магнитного поля, направленная противоположно внешнему полю. Наведенные составляющие магнитных полей атомов (молекул) складываются и образуют собственное магнитное поле вещества, ослабляющее внешнее магнитное поле. Этот эффект получил название диамагнитного эффекта, а вещества, намагничивающиеся во внешнем магнитном поле против направления поля, называются диамагнетиками.
В отсутствие внешнего магнитного поля диамагнетик немагнитен, поскольку в данном случае магнитные моменты электронов взаимно компенсируются, и суммарный магнитный момент атома (он равен векторной сумме магнитных моментов (орбитальных и спиновых) составляющих атом электронов) равен нулю. К диамагнетикам относятся многие металлы (например, Bi, Ag, Au, Сu), большинство органических соединений, смолы, углерод и т. д.
Так как диамагнитный эффект обусловлен действием внешнего магнитного поля на электроны атомов вещества, то диамагнетизм свойствен всем веществам. Однако наряду с диамагнитными веществами существуют и парамагнитные — вещества, намагничивающиеся во внешнем магнитном поле по направлению поля.
У парамагнитных веществ при отсутствии внешнего магнитного поля магнитные моменты электронов не компенсируют друг друга, и атомы (молекулы) парамагнетиков всегда обладают магнитным моментом. Однако вследствие теплового движения молекул их магнитные моменты ориентированы беспорядочно, поэтому парамагнитные вещества магнитными свойствами не обладают. При внесении парамагнетика во внешнее магнитное поле устанавливается преимущественная ориентация магнитных моментов атомов по полю (полной ориентации препятствует тепловое движение атомов). Таким образом, парамагнетик намагничивается, создавая собственное магнитное поле, совпадающее по направлению с внешним полем и усиливающее его. Этот эффект называется парамагнитным. При ослаблении внешнего магнитного поля да нуля ориентация магнитных моментов вследствие теплового движения нарушается и парамагнетик размагничивается. К парамагнетикам относятся редкоземельные элементы, Pt, Аl и т.д. Диамагнитный эффект наблюдается и в парамагнетиках, но он значительно слабее парамагнитного и поэтому остается незаметным.
Из рассмотрения явления парамагнетизма следует, что его объяснение совпадает с объяснением ориентационной (дипольной) поляризации диэлектриков с полярными молекулами, только электрический момент атомов в случае поляризации надо заменить магнитным моментом атомов в случае намагничения.
Индукция магнитного поля, создаваемого электрическими токами в веществе, отличается от индукции магнитного поля, создаваемого теми же токами в вакууме. Физическая величина, показывающая, во сколько раз индукция В магнитного поля в однородной среде отличается по модулю от индукции В0 магнитного поля в вакууме, называется магнитной проницаемостью: μ = В/В0. (15.3.)
Магнитные свойства веществ определяются магнитными свойствами атомов или элементарных частиц (электронов, протонов и нейтронов), входящих в состав атомов. Магнитные свойства протонов и нейтронов почти в 1000 раз слабее магнитных свойств электронов. Поэтому магнитные свойства веществ в основном определяются электронами, входящими в состав атомов. Внешнее магнитное поле изменяет характер движения электронов в атомах. Если орбита электрона ориентирована относительно вектора магнитной индукции внешнего поля В под углом , то она приходит (под действием силы Лоренца) в прецессионное движение.
Рис. 79. Движение электрона.
При этом вектор магнитного момента pm., сохраняя постоянным угол , вращается вокруг направления В с некоторой угловой скоростью. Прецессионное движение дает дополнительный круговой микро ток. По правилу Ленца у атома появляется наведенное магнитное поле. Наведенные поля отдельных атомов складываются и образуют суммарное наведенное магнитное поле вещества. Одним из важнейших свойств электрона является наличие у него не только электрического, но и собственного магнитного поля. Собственное магнитное поле электрона называют спиновым (spin – вращение). Электрон создает магнитное поле также и за счет орбитального движения вокруг ядра, которое можно уподобить круговому микротоку. Спиновые поля электронов и магнитные поля, обусловленные их орбитальными движениями, и определяют широкий спектр магнитных свойств веществ. Вещества крайне разнообразны по своим магнитным свойствам.
Магнитное поле в веществе создается возбудителями двух видов: первичными (независимыми) источниками, которыми чаще всего являются токи (движущиеся заряды) и вторичными (зависимыми), обусловленными средой. По своим магнитным свойствам вещество делится на три основных типа: диамагнетики, парамагнетики и ферромагнетики.
В
диамагнетиках
,
то есть
магнитное поле в веществе меньше
магнитного поля в вакууме; в парамагнетиках
,
магнитное поле возрастает по сравнению
с полем в вакууме; в ферромагнетиках
,
магнитное поле возрастает значительно,
в сотни и более раз. Следует отметить,
что у ферромагнитных материалов магнитная
проницаемость не является постоянной
величиной, а зависит от индукции внешнего
магнитного поля. Слабо-магнитные
вещества делятся на две большие группы
– парамагнетики и диамагнетики. Они
отличаются тем, что при внесении во
внешнее магнитное поле парамагнитные
образцы намагничиваются так, что их
собственное магнитное поле оказывается
направленным по внешнему полю. Но
из-за теплового движения атомов в
парамагнетиках магнитные моменты
ориентированы хаотично и суммарный
магнитный момент вещества равен нулю.
Во внешнем магнитном поле магнитные
моменты отдельных атомов ориентируются
по полю и усиливают его. И вещества
являются парамагнетиками (магнитная
проницаемость >1).
А
диамагнитные образцы намагничиваются
против внешнего поля и поэтому у
диамагнетиков μ
< 1.
Отличие μ
от единицы у пара- и диамагнетиков
чрезвычайно мало.
