- •1.1. Закон сохранения электрического заряда.
- •1.2. Закон кулона.
- •1.3. Электростатическое поле.
- •1.4. Принцип суперпозиции. Электростатических полей.
- •1.5. Задачи электростатики.
- •1.6. Поле диполя.
- •2.1. Теорема гаусса
- •2.2. Применение теоремы гаусса для расчета
- •2.3. Теорема гаусса в дифференциальной форме.
- •3.1. Циркуляция вектора напряженности
- •3.2. Потенциал электростатического поля.
- •3.3. Напряженность, как градиент потенциала. Эквипотенциальные поверхности.
- •3.4. Вычисление разности потенциалов по напряженности поля.
- •4.1. Типы диэлектриков. Поляризация диэлектриков.
- •4.2. Поляризованность.
- •4.3. Электрическое смещение.
- •4.4. Теорема гаусса для электростатического
- •4.5. Условия на границе раздела
- •4. 6. Сегнетоэлектрики.
- •5.1. Проводники в электрическом поле.
- •5.2. Электрическая емкость проводника.
- •5.3. Конденсаторы.
- •Параллельное соединение конденсаторов.
- •2. Последовательное соединение конденсаторов.
- •5.4. Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля.
- •1. Энергия системы неподвижных точечных зарядов.
- •2. Энергия заряженного уединенного проводника.
- •3. Энергия заряженного конденсатора.
- •4. Энергия электростатического поля.
- •6.1. Электрический ток.
- •6.2. Сила и плотность тока.
- •6.3. Сторонние силы.
- •6.4. Закон ома.
- •6.5. Сопротивление проводников.
- •6.6. Зависимость сопротивления
- •7.1. Работа и мощность тока.
- •7.2. Закон джоуля - ленца.
- •7.3. Закон ома для неоднородного участка цепи.
- •7.4. Правила кирхгофа для разветвленных
- •8.1. Элементарная классическая теория
- •8.2. Вывод основных законов электрического тока в классической теории электропроводности металлов.
- •1. Закон Ома.
- •2. Закон Джоуля - Ленца.
- •3. Закон Видемана - Франца.
- •8.3. Работа выхода электронов из металла.
- •9.1. Эмиссионные явления и их применение.
- •1. Термоэлектронная эмиссия — это испускание электронов нагретыми металлами.
- •9.2. Ионизация газов.
- •9.3. Газовый разряд.
- •9.4. Самостоятельный газовый разряд.
- •3. Дуговой разряд.
- •9.5. Плазма и ее свойства.
- •10.1. Магнитное поле.
- •10.2. Закон био-савара-лапласа.
- •Принцип суперпозиции полей в магнетизме
- •10.3. Закон ампера.
- •10.4. Магнитное поле движущегося заряда.
- •11.1. Действие магнитного поля на движущийся заряд.
- •11.2. Движение заряженных частиц в
- •11.3. Ускорители заряженных частиц.
- •11.4. Эффект холла.
- •11.5. Циркуляция вектора индукции
- •12.1. Магнитное поле соленоида и тороида.
- •12.2. Магнитное поле земли.
- •12.3. Поток вектора магнитной индукции.
- •12.4. Работа по перемещению проводника и
- •13.1. Явление электромагнитной индукции. Закон фарадея и его вывод из закона сохранения энергии.
- •13.2. Вращение рамки в магнитном поле.
- •13.3. Вихревые токи (токи фуко).
- •14.1. Индуктивность контура. Самоиндукция.
- •14.2. Токи при размыкании и замыкании цепи.
- •14.3. Взаимная индукция. Трансформаторы. Передача электрической энергии.
- •14.4. Энергия магнитного поля.
- •15.1. Магнитные моменты электронов и атомов.
- •15.2. Магнитное поле в веществе.
- •15.3. Намагниченность.
- •15.4. Условия на границе раздела двух магнетиков.
- •15.5. Ферромагнетики и их свойства.
- •15.6. Природа ферромагнетизма.
- •16.1. Колебания.
- •16.2. Переменный ток. Получение переменного тока.
- •16.3. Закон ома для цепи переменного тока.
- •16.4. Цепь переменного тока, содержащая r,c, l.
- •16.6. Резонанс токов.
- •16.7. Мощность, выделяемая в цепи
- •17.1. Гармонические колебания в
- •17.2. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •17.3. Сложение взаимно перпендикулярных колебаний
- •17.4. Свободные затухающие колебания в
- •17.5. Вынужденные колебания.
- •17.6. Дифференциальные уравнения
- •17.7. Резонанс в колебательном контуре..
- •18.1. Вихревое электрическое поле.
- •18.2. Ток смещения.
- •18.3. Уравнение максвелла для
- •1.1. Закон сохранения электрического заряда.
1.6. Поле диполя.
Рис. 6. Поле диполя.
Электрический диполь — система двух равных по модулю разноименных точечных зарядов. Вектор, направленный по оси диполя, от отрицательного заряда к положительному и равный расстоянию между ними, называют плечом диполя l. Вектор p = |q|.l (1.8)
совпадающий, по направлению с плечом диполя и равный произведению заряда на плечо, называется электрическим моментом диполя или дипольным моментом.
Напряженность поля на продолжении оси диполя в точке А. равна
EA = E+ - E- Обозначив расстояние от точки А до середины диполя через r, на основании формулы Кулона для вакуума, получим:
E = 1/(4pe0)[q/(r - l/2)2 - q/(r + l/2)2] =
= q/(4pe0){[(r + l/2)2 - (r - l/2)2]/ [(r - l/2)2(r + l/2)2]} (1.9.)
согласно определению диполя, l/2 << r, поэтому
E = 1/(4pe0).(2ql/r3) = 1/(4pe0)(p/r3). (1.10.)
2) Напряженность поля на перпендикуляре, восстановленном к оси диполя из его середины, в точке В. Точка В равноудалена от зарядов, поэтому
E+ = E- = 1/(4pe0)[q/(r2 + l2/4) » 1/(4pe0)[q/r2). (1.11.)
где r - расстояние от точки В до середины плеча диполя. Из подобия равнобедренных треугольников, опирающихся на плечо диполя и вектор ЕВ, получим EB/E+ = l/Ö(r2 + (l/2)2) » l/r, (1.12.)
откуда EB = E+(l/r), и EB = (1/4pe0)(ql/r3) = (1/4pe0)(p/r3). (1.13.)
|
Рис 7. Дипольный момент молекулы воды. |
Вектор ЕВ имеет направление, противоположное электрическому моменту диполя. Дипольный момент pассматpивается, как вектоp, напpавленный от отpицательного заpяда диполя к положительному. Диполь может служить электрической моделью многих молекул.
ПРИМЕР № 1. Три одинаковых точечных заряда q1 = q2 = q3 находятся в вершинах равностороннего треугольника со сторонами а. Определить модуль и направление силы, действующей на один из зарядов со стороны двух других.
Дано: q1 = q2 = q3 а. |
F-? |
Сила
с которой действет заряд q1
на заряд q2
определяется из закона кулона:
Где
ε – диэлектрическая постоянная. В нашем
случае заряды и расстояния между ними
одинаковы, поэтому :
Лекция № 2.
2.1. Теорема гаусса
ДЛЯ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ В ВАКУУМЕ.
Свойства электростатического поля можно выразить в общей форме, не прибегая к представлению о кулоновском поле точечного заряда. Введем новую физическую величину, характеризующую электрическое поле – поток Ф вектора напряженности электрического поля. Понятие потока вектора E аналогично понятию потока вектора скорости v при течении несжимаемой жидкости. Пусть в пространстве, где создано электрическое поле, расположена некоторая достаточно малая площадка ΔS.
|
Рис. 8. Вычисление потока Ф через произвольную замкнутую поверхность S. |
Произведение модуля вектора E на площадь ΔS и на косинус угла α между вектором E и нормалью n к площадке называется элементарным потоком вектора напряженности через площадку ΔS. Рассмотрим произвольную замкнутую поверхность S. Если разбить эту поверхность на малые площадки ΔSi, определить элементарные потоки ΔΦi поля E через эти малые площадки, а затем их просуммировать, то в результате мы получим поток Φ вектора E через замкнутую поверхность S:
Ф = ∑ΔФi = ∑Eni ΔSi . (2.1.)
Для замкнутой поверхности выбирается внешняя нормаль.
Теорема Гаусса утверждает: Поток вектора напряженности электростатического поля E через произвольную замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на электрическую постоянную ε0. Ф = (1/έ0)∑qвнутр.. (2.2.)
Рассмотрим сначала сферическую поверхность S, в центре которой находится точечный заряд q. Электрическое поле в любой точке сферы перпендикулярно к ее поверхности и равно по модулю
E = En = (1/4πέ0)(q/R2), (2.3.)
где R – радиус сферы. Поток Φ через сферическую поверхность будет равен произведению E на площадь сферы 4πR2. Следовательно,
Ф = (1/έ0)qвнутр.. (2.4.)
|
Рис. 9. Поток электрического поля точечного заряда через произвольную поверхность S, окружающую заряд. |
Окружим теперь точечный заряд замкнутой поверхностью S и рассмотрим вспомогательную сферу радиуса R0. Рассмотрим конус с малым телесным углом ΔΩ при вершине. Этот конус выделит на сфере малую площадку ΔS0, а на поверхности S – площадку ΔS. Элементарные потоки ΔΦ0 и ΔΦ через эти площадки одинаковы. Действительно, ΔФ0 = E0ΔS0,
ΔФ0 = EΔScosά = EΔS. (2.5.)
Здесь ΔS = ΔScosα – площадка, выделяемая конусом с телесным углом ΔΩ на поверхности сферы радиуса r. Так как
E0/E = r2/R20 (2.6.)
а
ΔS0/ΔS1= R20/r2, (2.7.)
следовательно,
ΔΦ0 = ΔΦ. (2.8.)
Отсюда следует, что полный поток электрического поля точечного заряда через произвольную поверхность, охватывающую заряд, равен потоку Φ0 через поверхность вспомогательной сферы:
Ф = Ф0 = q/έ0. (2.9.)
Аналогичным образом можно показать, что, если замкнутая поверхность S не охватывает точечного заряда q, то поток Φ = 0. Поле любого распределения зарядов можно представить как векторную сумму электрических полей Ei точечных зарядов. Поток Φ системы зарядов через произвольную замкнутую поверхность S будет складываться из потоков Φi электрических полей отдельных зарядов. Если заряд qi оказался внутри поверхности S, то он дает вклад в поток, равный qi/έ0, если же этот заряд оказался снаружи поверхности, то вклад его электрического поля в поток будет равен нулю. Теорема Гаусса является следствием закона Кулона и принципа суперпозиции. Используя теорему Гаусса, можно вычислить напряженность электрического поля вокруг заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией и общую структуру поля можно заранее угадать.
