- •1.1. Закон сохранения электрического заряда.
- •1.2. Закон кулона.
- •1.3. Электростатическое поле.
- •1.4. Принцип суперпозиции. Электростатических полей.
- •1.5. Задачи электростатики.
- •1.6. Поле диполя.
- •2.1. Теорема гаусса
- •2.2. Применение теоремы гаусса для расчета
- •2.3. Теорема гаусса в дифференциальной форме.
- •3.1. Циркуляция вектора напряженности
- •3.2. Потенциал электростатического поля.
- •3.3. Напряженность, как градиент потенциала. Эквипотенциальные поверхности.
- •3.4. Вычисление разности потенциалов по напряженности поля.
- •4.1. Типы диэлектриков. Поляризация диэлектриков.
- •4.2. Поляризованность.
- •4.3. Электрическое смещение.
- •4.4. Теорема гаусса для электростатического
- •4.5. Условия на границе раздела
- •4. 6. Сегнетоэлектрики.
- •5.1. Проводники в электрическом поле.
- •5.2. Электрическая емкость проводника.
- •5.3. Конденсаторы.
- •Параллельное соединение конденсаторов.
- •2. Последовательное соединение конденсаторов.
- •5.4. Энергия системы зарядов, уединенного проводника и конденсатора. Энергия электростатического поля.
- •1. Энергия системы неподвижных точечных зарядов.
- •2. Энергия заряженного уединенного проводника.
- •3. Энергия заряженного конденсатора.
- •4. Энергия электростатического поля.
- •6.1. Электрический ток.
- •6.2. Сила и плотность тока.
- •6.3. Сторонние силы.
- •6.4. Закон ома.
- •6.5. Сопротивление проводников.
- •6.6. Зависимость сопротивления
- •7.1. Работа и мощность тока.
- •7.2. Закон джоуля - ленца.
- •7.3. Закон ома для неоднородного участка цепи.
- •7.4. Правила кирхгофа для разветвленных
- •8.1. Элементарная классическая теория
- •8.2. Вывод основных законов электрического тока в классической теории электропроводности металлов.
- •1. Закон Ома.
- •2. Закон Джоуля - Ленца.
- •3. Закон Видемана - Франца.
- •8.3. Работа выхода электронов из металла.
- •9.1. Эмиссионные явления и их применение.
- •1. Термоэлектронная эмиссия — это испускание электронов нагретыми металлами.
- •9.2. Ионизация газов.
- •9.3. Газовый разряд.
- •9.4. Самостоятельный газовый разряд.
- •3. Дуговой разряд.
- •9.5. Плазма и ее свойства.
- •10.1. Магнитное поле.
- •10.2. Закон био-савара-лапласа.
- •Принцип суперпозиции полей в магнетизме
- •10.3. Закон ампера.
- •10.4. Магнитное поле движущегося заряда.
- •11.1. Действие магнитного поля на движущийся заряд.
- •11.2. Движение заряженных частиц в
- •11.3. Ускорители заряженных частиц.
- •11.4. Эффект холла.
- •11.5. Циркуляция вектора индукции
- •12.1. Магнитное поле соленоида и тороида.
- •12.2. Магнитное поле земли.
- •12.3. Поток вектора магнитной индукции.
- •12.4. Работа по перемещению проводника и
- •13.1. Явление электромагнитной индукции. Закон фарадея и его вывод из закона сохранения энергии.
- •13.2. Вращение рамки в магнитном поле.
- •13.3. Вихревые токи (токи фуко).
- •14.1. Индуктивность контура. Самоиндукция.
- •14.2. Токи при размыкании и замыкании цепи.
- •14.3. Взаимная индукция. Трансформаторы. Передача электрической энергии.
- •14.4. Энергия магнитного поля.
- •15.1. Магнитные моменты электронов и атомов.
- •15.2. Магнитное поле в веществе.
- •15.3. Намагниченность.
- •15.4. Условия на границе раздела двух магнетиков.
- •15.5. Ферромагнетики и их свойства.
- •15.6. Природа ферромагнетизма.
- •16.1. Колебания.
- •16.2. Переменный ток. Получение переменного тока.
- •16.3. Закон ома для цепи переменного тока.
- •16.4. Цепь переменного тока, содержащая r,c, l.
- •16.6. Резонанс токов.
- •16.7. Мощность, выделяемая в цепи
- •17.1. Гармонические колебания в
- •17.2. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •17.3. Сложение взаимно перпендикулярных колебаний
- •17.4. Свободные затухающие колебания в
- •17.5. Вынужденные колебания.
- •17.6. Дифференциальные уравнения
- •17.7. Резонанс в колебательном контуре..
- •18.1. Вихревое электрическое поле.
- •18.2. Ток смещения.
- •18.3. Уравнение максвелла для
- •1.1. Закон сохранения электрического заряда.
ЭЛЕКТРОСТАТИКА.
Лекция № 1.
1.1. Закон сохранения электрического заряда.
Электрический заряд - это физическая величина, характеризующая свойство частиц или тел вступать в электромагнитные силовые взаимодействия. Заряды могут передаваться от одного тела к другому. В отличие от массы тела электрический заряд не является неотъемлемой характеристикой данного тела. Одно и то же тело в разных условиях может иметь разный заряд. Есть два типа электрических зарядов: положительные и отрицательные. Одноименные заряды отталкиваются, а разноименные — притягиваются. Заряд любого тела составляет целое кратное от элементарного электрического заряда е. (e = 1,6 10-19 Кл.). Электрический заряд — величина релятивистски инвариантная, т. е. не зависит от системы отсчета, а значит, не зависит от того, движется этот заряд или покоится.
Элементарный заряд e является квантом (наименьшей порцией) электрического заряда. Сообщение телам зарядов сводится лишь к разделению зарядов, при котором на одном из тел появляется положительный заряд, а на другом — отрицательный. Общий заряд не изменяется: заряды только перераспределяются.
Алгебраическая сумма всех электрических зарядов любой замкнутой системы остается неизменной (какие бы процессы ни происходили внутри этой системы).
q1+q2+q3+ +qn= const. (1.1)
Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака. Наличие носителей зарядов является условием того, что тело проводит электрический ток. В зависимости от способности проводить электрический ток, тела делятся на: проводники, диэлектрики и полупроводники.
Проводники – тела, в которых электрический заряд может перемещаться по всему его объёму. Проводники делятся на две группы:
проводники первого рода (металлы) – перенос в них электрических зарядов (свободных электронов) не сопровождается химическими превращениями;
проводники второго рода (расплавы солей, растворы солей и кислот и другие) – перенос в них зарядов (положительно и отрицательно заряженных ионов) ведёт к химическим изменениям.
Диэлектрики (стекло, пластмасса) – тела, которые не проводят электрический ток и в них практически отсутствуют свободные заряды.
Полупроводники – занимают промежуточное положение между проводниками и диэлектриками. Их проводимость сильно зависит от внешних условий (температура, ионизирующее излучение и т.д.). В Международной системе СИ за единицу заряда принят кулон (Кл)
— электрический заряд, проходящий через поперечное сечение
проводника при силе тока 1 А за время 1 с.
1.2. Закон кулона.
Точечным называется заряд, сосредоточенный на теле, линейные размеры которого пренебрежимо малы по сравнению с расстоянием до других заряженных тел, с которыми он взаимодействует. Понятие точечного заряда, как и материальной точки, является физической абстракцией.
Силы взаимодействия неподвижных зарядов прямо пропорциональны произведению модулей зарядов и обратно пропорциональны квадрату расстояния между ними: F = (1/4πεε0)(q1q2/r2), (1.2)
где ε0 = 8,85 10-12 (Кл2/Н.м2) –электрическая постоянная.
-
Рис. 1. Силы взаимодействия одноименных и разноименных зарядов.
Величина, показывающая во сколько раз сила взаимодействия зарядов в вакууме больше, чем в среде, называется диэлектрической проницаемостью среды ε.
Кулоновские силы - центральные, т.е. они направлены по линии соединения центра зарядов. Силы взаимодействия подчиняются третьему закону Ньютона: F1 = -F2 . (1.3)
Они являются силами отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках. Взаимодействие неподвижных электрических зарядов называют электростатическим или кулоновским взаимодействием. Раздел электродинамики, изучающий кулоновское взаимодействие, называют электростатикой.
