- •Основные понятия термодинамики: система, параметры, состояние, процесс (определение, классификация, примеры).
- •2.Внутренняя энергия. Энтальпия. Теплота и работа – две формы передачи энергии.
- •Первое начало термодинамики: формулировки, применение к биосистемам.
- •Закон Гесса: формулировка, следствия, практическое значение
- •Второе начало термодинамики: формулировки Клаузиуса и Томсона. Свободная и связанная энергия.
- •Энтальпийный и энтропийный факторы, энергия Гиббса. Уравнение Гиббса. g как критерий самопроизвольного протекания изобарно-изотермических процессов
- •V Цепные реакции:
- •VI Сопряженные реакции:
- •Зависимость скорости реакции от концентрации реагирующих веществ (закон действующих масс). Константа скорости.
- •Молекулярность и порядок реакции. Определение молекулярности сложной реакции. Кинетические уравнения реакций нулевого, первого и второго порядков.
- •Зависимость скорости реакции от температуры. Правило Вант-Гоффа, особенности температурного коэффициента для биохимических процессов. Уравнение Аррениуса. Энергия активации.
- •Химическое равновесие. Константа химического равновесия. Уравнение изотермы химической реакции.
- •Прогнозирование смещения химического равновесия. Принцип Ле-Шателье.
- •Коллигативные свойства разбавленных растворов неэлектролитов. Закон Рауля: формулировки, расчетные формулы.
- •15. Следствие из Закона Раулы: понижение температуры замерзания, повышение температуры кипения р-ров
- •16.Осмос. Осмотическое давление. Закон Вант-Гоффа: вывод, формулировка
- •17. Осмотические св-ва растворов электролитов. Изотонический коэфициент
- •18. Гипо и гипер изотонические р-ры. Понятие об изоосмии. Осмоляльность и осмолярность биологических жидкостей
- •19. Роль осмоса в биологич системах пазмолиз и цитолих. Зависимость степени гемолиза эритроцитов от конц р-ра nacl
- •20.Буферные системы: определение, состав, классификация. Уравнения Гендерсона-Гассельбаха для расчета рН буферных систем.
- •21.Механизм действия бс при добавлении кислоты и щелочи (на примере ацетатной, аммиачной и белковой бс), разбавлении водой.
- •3.Амфолитные бс
- •3.Разбавление водой.
- •22. Буферная емкость и факторы на нее влияющие. Зона буферного действия.
- •24. Понятие о кислотно-основном состоянии организма: определение, значение для процессов жизнедеятельности, щелочной резерв крови
- •25. Координационная теория Вернера. Структура комплексных соединений
- •26. Номенклатура комплексных соединений.
- •27. Константы нестойкости и устойчивости.
- •29. Метало лигандный гомеостаз и причины его нарушения
- •30. Дисперсные системы: определение, классификация (по степени дисперсности, по агрегатному состоянию фаз), примеры.
- •1.Физические
- •32. Методы очистки коллоидных систем: диализ, электродиализ, ультрафильтрация. Физико-химические принципы функционирования искусственной почки.
- •33. Устойчивость дисперсных систем. Виды устойчивости коллоидных растворов: кинетическая (седиментационная), агрегативная и конденсационная. Факторы устойчивости.
- •34. Коагуляция. Виды коагуляции: скрытая и явная, медленная и быстрая. Порог коагуляции, пороговая концентрация. Биологическое значение коагуляции.
- •35.Правило Шульце-Гарди. Механизм коагулирующего действия электролитов.
- •36. Коллоидная защита и пептизация, значение этих явлений в медицине.
- •37.Свойства растворов вмс. Особенности растворения вмс как следствие их структуры. Форма макромолекул.
- •38. Механизм набухания и растворения вмс. Зависимость набухания от различных факторов.
- •39.Полиэлектролиты. Изоэлектрическая точка и методы ее определения.
- •40. Застудневание растворов вмс: механизм, факторы процесса. Свойства студней: тиксотропия и синерезис.
- •42. Концентрирование биогенных элементов живыми системами.
- •43. Классификация биогенных элементов по их содержанию в организме (макро-, олиго-, микробиогенные элементы) и по функциональной роли (органогены, элементы электролитного фона, микроэлементы).
- •I Классификация бэ по содержанию:
- •II Классификация бэ по функциональной роли:
- •44. Эссенциальные микроэлементы (Fe, Co, Cr, Mn, Zn, Cu, Mo): содержание в организме, биологическая роль.
- •Часть II. Теория. Биоорганическая химия
- •Нуклеофильная атака галагенониевого иона (быстро)
- •I стадия
- •II стадия
- •51. Двухатомные фенолы: гидрохинон,оезлрцин, пирокатехин.Окисление двухатомных фенолов.Система гидрохинон-хинон.Фенолы как антиоксиданты(ловушки свободных радикалов)
- •52. Двухосновные карбоновые кислоты: щавеливая малоовя, янтарная. Глутаровая. Фумаровая. Прекращение янтарной кислоты в фкмаровую как пример биологической р-ции дегидрирования
- •53. Аминоспирты 2-аминоэтанол(коламин), холин, ацетилхолин. Аминофенолы: дофамин, норадреналин,адренлин.Аминотиолы ( 2 аминоэтантиол). Понятие о биологич-ой роли
- •55.Одноосновные (молочная,β и ɣ-гидросимаслянная), двухосновные( яблючная, винная), трехосновная(лимонная) гидроксикислоты. Образование лимонной кислоты в рез-теадольного присоединения
- •57. Гетероцикы с одним гетероатомом. Пиррол, индол, пиридин хинолин строение, кисотно основные св-ва. Понятие о тетрапиррольных соединениях-порфин, протопорфин, гем
- •58. Биологически важные производные пиридина – никотинамид, пиридоксаль, производные изоникотиновой кислоты.
- •59.Гетероциклы с несколькими гетероатомами. Пиразол, имидазол, тиазол, пиразин, пиримидин, пурин: строение, кислотно-основные свойства.
- •63.Перикисное окисление липидов.
- •65.Моносахариды. Альдозы, кетозы. Пентозы, гексозы. Ксилоза, рибоза, 2-дезоксирибоза, фруктоза, строение, цикло-оксо-таутомерия.
- •66.Дисахариды: стрение, типы гликозидной связи, образование, гидролиз, цикло-оксо-таутомерия. Востанавливающие(мальтоза, лактоза, целлобиоза), невостанавливающие(сахароза), дисахариды.
- •67. Гомополисахариды: крахмал (амилоза, амилопектин), гликоген, декстран, целлюлоза. Пектиновые вещества. Понятие о гетерополисахаридах.
- •1. Классификация
- •1.1. По положению аминогруппы
- •1.2. По количеству карбокси- и аминогрупп
- •1.3 Классификация по встречаемости в белках
- •1.4. По пищевой ценности для человека
- •2.2. Рациональная
- •Химические свойства аминокислот
- •70. Пептиды. Электронное и пространственное строение пептидной связи. Кислотный и щелочной гидролиз пептидов.
Первое начало термодинамики: формулировки, применение к биосистемам.
Первое начало термодин=частный случай закона сохря в-вв
Вечный двигатель 1го рода невозможен, т.е. невозможно создать машину, которая производила бы без подведении энергии из вне,иначе говоря «создавать энергию»
Кол-во теплоты, полученное термодинамич-й системой расходуется на увеличение внутр и внеш энергии работы, совершаемую против действия внеш сил.
Q=∆U+A, преобразовав получим ∆U= Q-А
U-внутр энергия
Q-кол-во теплоты
А- работа,совершаемая против действия внеш сил.
Применение к биосистема. Живой организм не явл-ся источником новой энергии, поэтому полностью подчиняется требованиям 1го закона ТД, со следующей формулировкой: Все виды работ в организме совершаются за счет эквивалентного кол-ва энергии, выделяющийся при окислении хим в-в(3я формулировка)
Закон Гесса: формулировка, следствия, практическое значение
Закон Гесса- основной закон термохимии, который формулируется следующим образом:
Тепловой эффект реакции зависит только от природы и состояния исходных веществ и конечных продуктов и не зависит от пути, по которому реакция протекает.
Закон открыт русским химиком Г.И.Гессом в 1840г.
Практическое значение закона Гесса состоит в том, что он позволяет рассчитывать тепловые эффекты самых разнообразных химических процессов; для этого обычно используют ряд следствий из него.
Следствия из закона Гесса:
Тепловой эффект реакции равен сумме теплот образования продуктов реакции минус сумма теплот образования исходных веществ
ΔН=∑ΔНпрод.-∑ ΔН исх.
Теплота (стандартная энтальпия) образования органического соединения равна разности между теплотой сгорания простых веществ, из которых оно может быть получено ( С-графит, Н2-газ, S-ромб), и теплотой сгорания самого соединения.
ΔН=∑ΔНсгор.исх.-∑ ΔНсгор.прод.
Второе начало термодинамики: формулировки Клаузиуса и Томсона. Свободная и связанная энергия.
Второй закон устанавливает, что все реальные самопроизвольно идущие процессы являются необратимыми
Примеры необрат процессов-расширение газов, растворение, все процессы в организме
Формулировки:
Тепло не может самопроизвольно переходить от более холодного к более тёплому телу (Р. Клаузиус).
Невозможно при помощи неодушевлённого материального двигателя непрерывно получать работу, только охлаждая какую-либо массу вещества ниже температуры самой холодной части окружающей среды (В. Томсон)
Свободная и связанная энергия.
Из формулировки 2 зкона следует, что не весь запас внутр энергии системы при постоянной темературе может превращаться в работу-это физический смысл 2го закона
Условно, внутр энергию системы можно представить U=F+Q
F-свободня энергия(часть вн. Энергии,способная производить работу)
Q-связанная эрергия
Т.к U и F ф-ции состояния, то ∆U=∆F+Q
Толкование энтропии (S)-функция состояния, которая служит мерой беспорядка(неустойчивости) системы
Вычисление S в различных процессах
1.изотермический-т-пост
∆S=Q/T [S]=Дж/кк
2.неизотермич
∆S=C* lnT2/Т1 = 2,3С * lg T2/Т1
С-молярная теплоемкость в-в
∆S>0 процесс протекает самопроизв
Энтропия с точки зрения классической термодинамики (энтропия как мера связанной энергии). Определение энтропии, расчет энтропии веществ в различных процессах (изотермический, изобарный, изохорный), стандартная энтропия, расчет S химической реакции. Свойства энтропии.
Энтропия- мера связанной энергии, т.е. количество связанной энергии, приходящейся на 1К.
Понятие энтропии было впервые введено в 1865г. Рудольфом Клаузиусом. Он определил изменение энтропии термодинамической системы при обратимом процессе как отношение общего количества тепла ΔQ к величине абсолютной температуры Т (т.е. тепло, переданное системе, при постоянной температуре).
Изотермический процесс (Т=const):
ΔS= ΔQ/Т
[S] = Дж/К
Неизотермические процессы ( изобарный (Р=const), изохорный (V=const)):
ΔS= С*lnT2/ Т 1 = 2,3*lg lnT2/ Т1 , где С-молярная теплоемкость в-ва.
Стандартная энтропия (S298) – абсолютное значение энтропии 1 моля в-ва, рассчитанное для стандартных условий.
[S298] = Дж/моль*К
ΔS298 =∑nS 298(прод.) - ∑nS 298(исх.)
Свойства энтропии:
Энтропия тела при абсолютном нуле равна нулю.
Энтропия веществ может быть только положительной величиной.
Энтропия является величиной аддитивной: энтропия сложной системы равна сумме энтропий ее частей.
