- •Основные понятия термодинамики: система, параметры, состояние, процесс (определение, классификация, примеры).
- •2.Внутренняя энергия. Энтальпия. Теплота и работа – две формы передачи энергии.
- •Первое начало термодинамики: формулировки, применение к биосистемам.
- •Закон Гесса: формулировка, следствия, практическое значение
- •Второе начало термодинамики: формулировки Клаузиуса и Томсона. Свободная и связанная энергия.
- •Энтальпийный и энтропийный факторы, энергия Гиббса. Уравнение Гиббса. g как критерий самопроизвольного протекания изобарно-изотермических процессов
- •V Цепные реакции:
- •VI Сопряженные реакции:
- •Зависимость скорости реакции от концентрации реагирующих веществ (закон действующих масс). Константа скорости.
- •Молекулярность и порядок реакции. Определение молекулярности сложной реакции. Кинетические уравнения реакций нулевого, первого и второго порядков.
- •Зависимость скорости реакции от температуры. Правило Вант-Гоффа, особенности температурного коэффициента для биохимических процессов. Уравнение Аррениуса. Энергия активации.
- •Химическое равновесие. Константа химического равновесия. Уравнение изотермы химической реакции.
- •Прогнозирование смещения химического равновесия. Принцип Ле-Шателье.
- •Коллигативные свойства разбавленных растворов неэлектролитов. Закон Рауля: формулировки, расчетные формулы.
- •15. Следствие из Закона Раулы: понижение температуры замерзания, повышение температуры кипения р-ров
- •16.Осмос. Осмотическое давление. Закон Вант-Гоффа: вывод, формулировка
- •17. Осмотические св-ва растворов электролитов. Изотонический коэфициент
- •18. Гипо и гипер изотонические р-ры. Понятие об изоосмии. Осмоляльность и осмолярность биологических жидкостей
- •19. Роль осмоса в биологич системах пазмолиз и цитолих. Зависимость степени гемолиза эритроцитов от конц р-ра nacl
- •20.Буферные системы: определение, состав, классификация. Уравнения Гендерсона-Гассельбаха для расчета рН буферных систем.
- •21.Механизм действия бс при добавлении кислоты и щелочи (на примере ацетатной, аммиачной и белковой бс), разбавлении водой.
- •3.Амфолитные бс
- •3.Разбавление водой.
- •22. Буферная емкость и факторы на нее влияющие. Зона буферного действия.
- •24. Понятие о кислотно-основном состоянии организма: определение, значение для процессов жизнедеятельности, щелочной резерв крови
- •25. Координационная теория Вернера. Структура комплексных соединений
- •26. Номенклатура комплексных соединений.
- •27. Константы нестойкости и устойчивости.
- •29. Метало лигандный гомеостаз и причины его нарушения
- •30. Дисперсные системы: определение, классификация (по степени дисперсности, по агрегатному состоянию фаз), примеры.
- •1.Физические
- •32. Методы очистки коллоидных систем: диализ, электродиализ, ультрафильтрация. Физико-химические принципы функционирования искусственной почки.
- •33. Устойчивость дисперсных систем. Виды устойчивости коллоидных растворов: кинетическая (седиментационная), агрегативная и конденсационная. Факторы устойчивости.
- •34. Коагуляция. Виды коагуляции: скрытая и явная, медленная и быстрая. Порог коагуляции, пороговая концентрация. Биологическое значение коагуляции.
- •35.Правило Шульце-Гарди. Механизм коагулирующего действия электролитов.
- •36. Коллоидная защита и пептизация, значение этих явлений в медицине.
- •37.Свойства растворов вмс. Особенности растворения вмс как следствие их структуры. Форма макромолекул.
- •38. Механизм набухания и растворения вмс. Зависимость набухания от различных факторов.
- •39.Полиэлектролиты. Изоэлектрическая точка и методы ее определения.
- •40. Застудневание растворов вмс: механизм, факторы процесса. Свойства студней: тиксотропия и синерезис.
- •42. Концентрирование биогенных элементов живыми системами.
- •43. Классификация биогенных элементов по их содержанию в организме (макро-, олиго-, микробиогенные элементы) и по функциональной роли (органогены, элементы электролитного фона, микроэлементы).
- •I Классификация бэ по содержанию:
- •II Классификация бэ по функциональной роли:
- •44. Эссенциальные микроэлементы (Fe, Co, Cr, Mn, Zn, Cu, Mo): содержание в организме, биологическая роль.
- •Часть II. Теория. Биоорганическая химия
- •Нуклеофильная атака галагенониевого иона (быстро)
- •I стадия
- •II стадия
- •51. Двухатомные фенолы: гидрохинон,оезлрцин, пирокатехин.Окисление двухатомных фенолов.Система гидрохинон-хинон.Фенолы как антиоксиданты(ловушки свободных радикалов)
- •52. Двухосновные карбоновые кислоты: щавеливая малоовя, янтарная. Глутаровая. Фумаровая. Прекращение янтарной кислоты в фкмаровую как пример биологической р-ции дегидрирования
- •53. Аминоспирты 2-аминоэтанол(коламин), холин, ацетилхолин. Аминофенолы: дофамин, норадреналин,адренлин.Аминотиолы ( 2 аминоэтантиол). Понятие о биологич-ой роли
- •55.Одноосновные (молочная,β и ɣ-гидросимаслянная), двухосновные( яблючная, винная), трехосновная(лимонная) гидроксикислоты. Образование лимонной кислоты в рез-теадольного присоединения
- •57. Гетероцикы с одним гетероатомом. Пиррол, индол, пиридин хинолин строение, кисотно основные св-ва. Понятие о тетрапиррольных соединениях-порфин, протопорфин, гем
- •58. Биологически важные производные пиридина – никотинамид, пиридоксаль, производные изоникотиновой кислоты.
- •59.Гетероциклы с несколькими гетероатомами. Пиразол, имидазол, тиазол, пиразин, пиримидин, пурин: строение, кислотно-основные свойства.
- •63.Перикисное окисление липидов.
- •65.Моносахариды. Альдозы, кетозы. Пентозы, гексозы. Ксилоза, рибоза, 2-дезоксирибоза, фруктоза, строение, цикло-оксо-таутомерия.
- •66.Дисахариды: стрение, типы гликозидной связи, образование, гидролиз, цикло-оксо-таутомерия. Востанавливающие(мальтоза, лактоза, целлобиоза), невостанавливающие(сахароза), дисахариды.
- •67. Гомополисахариды: крахмал (амилоза, амилопектин), гликоген, декстран, целлюлоза. Пектиновые вещества. Понятие о гетерополисахаридах.
- •1. Классификация
- •1.1. По положению аминогруппы
- •1.2. По количеству карбокси- и аминогрупп
- •1.3 Классификация по встречаемости в белках
- •1.4. По пищевой ценности для человека
- •2.2. Рациональная
- •Химические свойства аминокислот
- •70. Пептиды. Электронное и пространственное строение пептидной связи. Кислотный и щелочной гидролиз пептидов.
35.Правило Шульце-Гарди. Механизм коагулирующего действия электролитов.
В результате изучения коагуляции золей под влиянием электролитов Шульце и Гарди установили, что коагулирующее действие электролитов зависит от величины заряда иона, который противоположен заряду коллоидной частицы.
с наибольшей скоростью коагулируют электронейтральные частицы. Такое состояние частицы, заряженной до начала коагуляции, например положительно, станет возможным в том случае, если все противоионы диффузного слоя, заряженные отрицательно, будут перемещены в адсорбционный слой. Чем выше окажется концентрация добавленного электролита, тем сильнее будет сжат диффузный слой, тем меньше станет дзета-потенциал и быстрее пойдёт коагуляция. При достаточной концентрации электролита практически все противоионы окажутся в адсорбционном слое, заряд частицы снизится до нуля; отсутствие диффузного слоя обусловит значительное понижение давления расклинивания и коагуляция пойдёт с максимальной скоростью.
Коагулирующее действие ионов резко возрастает с увеличением числа их зарядов в прогрессии, которую грубо принимают за соотношение шестых степеней числа зарядов ионов: 1:26:36 и т.д. Эти соотношения в действительности меньше, что связано с влиянием на коагуляцию ряда факторов. Так, при относительно низких величинах дзета-потенциалов коагулируемых частиц соотношение может снижаться до 1:22:32 и т.д.
Способность двухзарядных ионов в десятки раз, а трёхзарядных – в сотни раз выше, чем у однозарядных ионов.
Для одного и того же золя ионы одной и той жё величины заряда, например K+ и Na+, Mg2+ и Ca2+, обладают значительно отличающейся коагулирующей способностью. Такую разницу в действии ионов объясняют неодинаковой степенью их сольватации. Однако отличие в коагулирующей способности каждого иона для тех или иных золей не очень велики, поэтому представилось возможным расположить одинаково заряженные ионы в лиотропные ряды, показывающие, в частности, в каком порядке убывает их коагулирующая способность для всех противоположных заряженных золей, например:
Cs+>Rb+>K+>Na+>Li+
Ba2+>Sr2+>Ca2+>Mg2+
Cl->Br->NO3->I->CNS-
Несходство в коагулирующей способности этих ионов объясняет их неодинаковый адсорбируемостью на коллоидных частицах. Коагулирующая способность одно-, двух- и трёх- зарядных ионов резко отличается и выражается соотношениями: 1:71:554; 1:73:610; 1:20:350 и т.д.
Механизм коагулирующего действия:
Чем больше заряд коагулирующих ионов, тем сильнее ни сжимают диффузный слой противоиона. Однако коагулирующее действие электролитов не сводится только к сжатию диффузного слоя. Одновременно протекает избирательная адсорбция на коллоидной частице тех ионов добавленного электролита, которые имеют заряд противоположный грануле. Чем выше заряд ионов, тем интенсивнее они адсорбируются. Происходящее в адсорбированном слое накопление ионов, заряженных противоположно частице, сопровождается соответственным уменьшением дзета-потенциала и, следовательно, диффузного слоя.
Помимо сжатия диффузного слоя и адсорбции ионов, при коагуляции золей электролитами происходит процесс ионообменной адсорбции, при котором противоионы адсорбционного слоя обмениваются на одноимённо заряженные ионы добавленного электролита. Если заряд последних выше, чем у противоионов, то такая замена приводит к значительному понижению дзета-потенциала.
Таким образом, все три процесса, уменьшающие заряд гранулы и её коагуляцию, протекают тем эффективнее, чем выше заряд коагулирующего иона. Это частично позволяет объединить разницу в коагулирующем действии ионов с различными величинами зарядов.
Основная причина коагуляции частиц заключается не в достижении некоторого для всех случаев постоянного критического дзета-потенциала, а в таком понижении расклинивающего давления которое перестаёт препятствовать объединению частиц. Необходимое понижение этого давления достигается уменьшением диффузного слоя, что в свою очередь ведёт к соответствующему понижению величины дзета-потенциала. Это согласуется с работами А.И. Рабиновича, подтвердившими как ведущую роль сжатия диффузного слоя и избирательной адсорбции ионов процессах коагуляции, так и оценки дзета-потенциала как важнейшего показателя устойчивости большинства коллоидных частиц.
